

CONTENTS

For	eword				14
List	of main t	echnical changes	in Edition 9		16
List	of main t	echnical changes	in Edition 10		
List	of main t	echnical changes	in Edition 11		
List	of main t	echnical changes	in Edition 12		
1		•			
2	•				
2				bols	
3					
	3.1				
	3.2			security	
	3.3			I to the Galois/Counter Mode	
	3.4			to Wi-SUN	
	3.5 3.6			er Mode	
	3.0 3.7			m	
	3.8			nt algorithms	
	3.8 3.9	•		OSEM M-Bus communication profil	
4				COLIMIN-Bus communication prom	
4	4.1				
	4.1				
	4.2 4.3				
	4.3 4.4	-	-		
	4.4 4.5				
	4.6	• •			
	4.7			and DLMS servers	
	4.8				
	4.9				
	4.10				
	4.11				
	4.12			in DLMS/COSEM	
	4.13		•	col identification service	
	4.14	•	• •		
5	Physica	• •		onnection-oriented asynchronous da	
	exchang	je	·	·	60
	5.1	Overview			60
	5.2	Service specifica	tion		61
	5.3	Protocol specifica	ation		65
	5.4	Example: PhL se	rvice primitives and	Hayes commands	70
6	Direct L	ocal Connection			75
	6.1	Introduction			75
	6.2	METERING HDL	C protocol using pro	otocol mode E for direct local data e	xchange75
	6.3				-
	6.4 Readout mode and programming mode76				
_	6.5	Physical layer –	Introduction		77
Γ	DLMS U	ser Association	2025-05-28	DLMS UA 1000-2 Ed. 12	1/633

	6.6	Physical layer primitives	78
	6.7	Data link layer	78
7	DLMS/0	COSEM transport layer for IP networks	79
	7.1	Scope	79
	7.2	The TCP-UDP/IP based transport layers	79
	7.3	The DLMS/COSEM CoAP based transport layer	104
8	Data Li	ink Layer using the HDLC protocol	152
	8.1	Overview	152
	8.2	Service specification	154
	8.3	Protocol specification for the LLC sublayer	166
	8.4	Protocol specification for the MAC sublayer	168
	8.5	FCS calculation	188
	8.6	Data link layer management services	192
9	DLMS/0	COSEM application layer	195
	9.1	DLMS/COSEM application layer main features	195
	<mark>9.2</mark>	Information security in DLMS/COSEM	205
	9.3	DLMS/COSEM application layer service specification	277
	9.4	DLMS/COSEM application layer protocol specification	319
	9.5	Abstract syntax of COSEM PDUs	
	9.6	COSEM PDU XML schema	399
10	Using t	he DLMS/COSEM application layer in various communications profiles	422
	10.1	Communication profile specific elements	422
	10.2	The 3-layer, connection-oriented, HDLC based communication profile	423
	10.3	The TCP-UDP/IP based communication profiles (COSEM_on_IP)	430
	10.4	The CoAP based communication profile (DLMS/COSEM_on_CoAP)	437
	10.5	The S-FSK PLC profile	444
	10.6	The wired and wireless <mark>M</mark> -Bus profile	471
	10.7	SMS short wrapper	495
	10.8	LPWAN profile	
	10.9	Wi-SUN profile	
	10.10	Gateway protocol	508
11	AARQ a	and AARE encoding examples	512
	11.1	General	512
	11.2	Encoding of the xDLMS InitiateRequest / InitiateResponse APDU	512
	11.3	Specification of the AARQ and AARE APDU	515
	11.4	Data for the examples	516
	11.5	Encoding of the AARQ APDU	517
	11.6	Encoding of the AARE APDU	
12	Encodi	ng examples: AARQ and AARE APDUs using a ciphered application contex	t 526
	12.1	A-XDR encoding of the xDLMS InitiateRequest APDU, carrying a dedicat	ed key526
	12.2	Authenticated encryption of the xDLMS InitiateRequest APDU	527
	12.3	The AARQ APDU	527
	12.4	A-XDR encoding of the xDLMS InitiateResponse APDU	529
	12.5	Authenticated encryption of the xDLMS InitiateResponse APDU	530
	12.6	The AARE APDU	530
	12.7	The RLRQ APDU (carrying a ciphered xDLMS InitiateRequest APDU)	
	12.8	The RLRE APDU (carrying a ciphered xDLMS InitiateResponse APDU)	532
Г	2/633	2025-05-28 DLMS UA 1000-2 Ed. 12 DLMS User A	ssociation

13	S-FSK F	PLC encoding examples		534
	13.1		IS APDUs carried by MAC frames usi	
	13.2		IS APDUs carried by MAC frames usi	
	13.3	Clear Alarm examples		544
14	Data tra	nsfer service examples		546
	14.1	GET / Read, SET / Write examples	3	546
	14.2	ACCESS service example		563
	14.3			
	14.4	-	encoding examples	
15	Data tra	nsfer service examples over LPWA	N using LoRaWAN Technology	584
	15.1		ervice transported through LPWAN us	
	15.2		otification service transported through	
	15.3	•	S service transported through LPWAN	
<mark>16</mark>	Attestat	ion and commissioning		596
	<mark>16.1</mark>	Introduction		596
	<mark>16.2</mark>	Attestation		596
	<mark>16.3</mark>		s	
	<mark>16.4</mark>	<u>_</u> _		
Ann	ex A (no	rmative) NSA Suite B elliptic curves	and domain parameters	600
Ann			nd end-entity Certificate using P-256	
	B.1	Fields of public key certificates		602
	B.2	Example of a Root-CA Certificate	using P-256 signed with P-256	603
	B.3		gnature Certificate using P-256 signed	
Ann	ex C (no	rmative) Use of key agreement sch	emes in DLMS/COSEM	605
	C.1	Ephemeral Unified Model C(2e, 0s	, ECC CDH) scheme	605
	C.2	One-Pass Diffie-Hellman C(1e, 1s	, ECC CDH) scheme	608
	C.3	Static Unified Model C(0e, 2s, EC	C CDH) scheme	612
Ann	ex D (inf	ormative) Exchanging protected xD	LMS APDUs between TP and server .	615
	D.1	General		615
	D.2	Example 1: Protection is the same	in the two directions	615
	D.3		n the two directions	
Bibl	iography			619
Inde	ex			624
Figu	ure 1 – Tl	ne three steps approach of COSEM	: Modelling – Messaging – Transporti	ng 18
Figu	ure 2 – C	lient-server model and communicat	ion protocols	
			SEM	
			the CO environment	
-				
-				
Figt	u e o – D		n profile	
	DLMS U	ser Association 2025-05-28	DLMS UA 1000-2 Ed. 12	3/633

Figure 7 – Model of a DLMS/COSEM system	. 55
Figure 8 – DLMS server model	. 56
Figure 9 – Model of a DLMS client using multiple protocol stacks	. 58
Figure 10 – Typical PSTN configuration	. 60
Figure 11 – The location of the physical layer	. 61
Figure 12 – Protocol layer services of the COSEM 3-layer connection-oriented profile	. 62
Figure 13 – MSC for physical connection establishment	. 66
Figure 14 – MSC for IDENTIFY.request / .response message exchange	. 68
Figure 15 – Handling the Identification service at the server side	. 68
Figure 16 – Partial state machine for the client side physical layer	. 69
Figure 17 – MSC for physical connection request	. 71
Figure 18 – Physical connection establishment at the CALLING station	. 72
Figure 19 – MSC for physical connection establishment	. 73
Figure 20 – Data exchange between the calling and called stations	
Figure 21 – MSC for a physical disconnection	
Figure 22 – Entering protocol mode E (HDLC)	. 75
Figure 23 – Flow chart and switchover to METERING HDLC in protocol mode E	
Figure 24 – Physical layer primitives	. 77
Figure 25 – Physical layer primitives, simplified example with one mode change only	. 77
Figure 26 – DLMS/COSEM as a standard Internet application protocol	. 80
Figure 27 – Transport layers of the DLMS/COSEM_on_IP profile	. 81
Figure 28 – Services of the DLMS/COSEM connection-less, UDP-based transport layer	. 82
Figure 29 – The wrapper protocol data unit (WPDU)	. 85
Figure 30 – The DLMS/COSEM connection-less, UDP-based transport layer PDU (UDP-PD	U)85
Figure 31 – Services of the DLMS/COSEM connection-oriented, TCP-based transport layer	87
Figure 32 – The TCP packet format	. 95
Figure 33 – TCP connection establishment	. 96
Figure 34 – TCP disconnection	. 97
Figure 35 – Data transfer using the COSEM TCP-based transport layer	. 98
Figure 36 – High-level state transition diagram for the wrapper sublayer	. 99
Figure 37 – TCP connection state diagram	100
Figure 38 – MSC and state transitions for establishing a transport layer and TCP connection	n 100
Figure 39 – MSC and state transitions for closing a transport layer and TCP connection \dots	101
Figure 40 – Polling the TCP sublayer for TCP abort indication	102
Figure 41 – Sending an APDU in three TCP packets	103
Figure 42 – Receiving the message in several packets	104
Figure 43 – DLMS/COSEM CoAP transport protocol layer	105
Figure 44 – Structure of DLMS/COSEM CoAP Transport Layer	106
Figure 45 – CoAP client and server endpoints within the DLMS/COSEM CoAP TL	107
Figure 46 – Services of the connection-less DLMS/COSEM CoAP transport layer	110
Figure 47 – The DLMS/COSEM CoAP TL Protocol Stack	115
Figure 48 – The DLMS/COSEM CoAP Wrapper Protocol Data Unit (CWPDU)	117

DLMS UA 1000-2 Ed. 12

DLMS User Association

Figure 49 – High-level state transition diagram for	the CoAP wrapper layer	126
Figure 50 – CoAP-DATA.request invocation hand	ling	129
Figure 51 – Handling of incoming CWPDU or CoA	P layer transmission failure	130
Figure 52 – Confirmed DLMS/COSEM AL service	request through CoAP TL	131
Figure 53 – Piggybacked and separate response	handling with reliable CoAP TL	133
Figure 54 – Loss Recovery of the reliable DLMS/0	COSEM CoAP TL	134
Figure 55 – Unconfirmed DataNotification through TL confirmation		
Figure 56 – Unconfirmed DataNotification through	unreliable CoAP TL	136
Figure 57 – CoAP BT of a response APDU over re	eliable CoAP TL	137
Figure 58 – CoAP BT of a request APDU over reli	able CoAP TL	138
Figure 59 – CoAP BT of request and response AF	DUs over reliable CoAP TL	139
Figure 60 – CoAP BT of an unconfirmed DataNoti	fication over reliable CoAP TL	140
Figure 61 – CoAP BT of an unconfirmed DataNoti	fication over unreliable CoAP TL	141
Figure 62 – CoAP BT in combination DLMS GBT	for transfer of a large response APD	U 143
Figure 63 – SET service with GBT streaming over	unreliable CoAP TL	145
Figure 64 – SET service with GBT streaming and	loss recovery by reliable CoAP TL	146
Figure 65 – Confirmed GET service with GBT stre	aming over unreliable CoAP TL	148
Figure 66 – Confirmed GET service with GBT stre	aming over reliable CoAP TL	149
Figure 67 – Confirmed service request with GBT s		
Figure 68 – Data link layer services for data link of		
Figure 69 – Data link layer services for data link of	lisconnection	159
Figure 70 – Data link layer data transfer services.		
Figure 71 – Physical layer services used by the N	AC sublayer	166
Figure 72 – The ISO/IEC 8802-2 LLC PDU format		
Figure 73 – LLC format as used in DLMS/COSEM		
Figure 74 – MAC sublayer frame format (HDLC fra		
Figure 75 – Multiple frames		
Figure 76 – The frame format field		
Figure 77 – Valid server address structures		170
Figure 78 – Address example		171
Figure 79 – MSC for long MSDU transfer in a tran	sparent manner	182
Figure 80 – Example configuration to illustrate bro	badcasting	183
Figure 81 – Sending out a pending UI frame with	a .response data	184
Figure 82 – Sending out a pending UI frame with	a response to a RR frame	185
Figure 83 – Sending out a pending UI frame on re	ceipt of an empty UI frame	185
Figure 84 – State transition diagram for the serve	r MAC sublayer	188
Figure 85 – Layer management services	-	
Figure 86 – The structure of the DLMS/COSEM a		
Figure 87 – The concept of composable xDLMS m		
Figure 88 – Summary of DLMS/COSEM AL service		
Figure 89 – Authentication mechanisms		
DLMS User Association 2025-05-28	DLMS UA 1000-2 Ed. 12	5/633

Figure 90 – Client – server message security concept	
Figure 91 – End-to-end message security concept 210	
Figure 92 – Hash function	
Figure 93 – Encryption and decryption	
Figure 94 – Message Authentication Codes (MACs) 214	
Figure 95 – GCM functions 215	
Figure 96 – Digital signatures 221	
Figure 97 – C(2e, 0s) scheme: each party contributes only an ephemeral key pair	
Figure 98 – C(1e, 1s) schemes: party U contributes an ephemeral key pair, and party V contributes a static key pair	
Figure 99 – C(0e, 2s) scheme: each party contributes only a static key pair	
Figure 100 – Architecture of a Public Key Infrastructure (example)	
Figure 101 – MSC for provisioning the server with CA certificates	
Figure 102 – MSC for security personalisation of the server	
Figure 103 – Provisioning the server with the certificate of the client	
Figure 104 – Provisioning the client / third party with a certificate of the server	
Figure 105 – Remove certificate from the server	
Figure 106 – Cryptographic protection of information using AES-GCM 250	
Figure 107 – Structure of service-specific global / dedicated ciphering xDLMS APDUs 252	
Figure 108 – Structure of general-glo-ciphering and general-ded-ciphering xDLMS APDUs 253	
Figure 109 – Structure of general-ciphering xDLMS APDUs	
Figure 110 – Structure of general-signing APDUs	
Figure 111 – Attestation Public Key Infrastructure Architectures	
Figure 112 – Device Attestation	
Figure 112 – Device Attestation276Figure 113 – Service primitives277	
Figure 112 – Device Attestation	
Figure 112 – Device Attestation276Figure 113 – Service primitives277	
Figure 112 – Device Attestation276Figure 113 – Service primitives277Figure 114 – Time sequence diagrams278	
Figure 112 – Device Attestation 276 Figure 113 – Service primitives 277 Figure 114 – Time sequence diagrams 278 Figure 115 – Additional service parameters to control cryptographic protection and GBT 288	
Figure 112 – Device Attestation276Figure 113 – Service primitives277Figure 114 – Time sequence diagrams278Figure 115 – Additional service parameters to control cryptographic protection and GBT288Figure 116 – Partial state machine for the client side control function320	
Figure 112 – Device Attestation276Figure 113 – Service primitives277Figure 114 – Time sequence diagrams278Figure 115 – Additional service parameters to control cryptographic protection and GBT288Figure 116 – Partial state machine for the client side control function320Figure 117 – Partial state machine for the server side control function321Figure 118 – MSC for successful AA establishment preceded by a successful lower layer	
Figure 112 – Device Attestation276Figure 113 – Service primitives277Figure 114 – Time sequence diagrams278Figure 115 – Additional service parameters to control cryptographic protection and GBT288Figure 116 – Partial state machine for the client side control function320Figure 117 – Partial state machine for the server side control function321Figure 118 – MSC for successful AA establishment preceded by a successful lower layer connection establishment329	
Figure 112 - Device Attestation276Figure 113 - Service primitives277Figure 114 - Time sequence diagrams278Figure 115 - Additional service parameters to control cryptographic protection and GBT288Figure 116 - Partial state machine for the client side control function320Figure 117 - Partial state machine for the server side control function321Figure 118 - MSC for successful AA establishment preceded by a successful lower layer connection establishment329Figure 119 - Graceful AA release using the A-RELEASE service334	
Figure 112 – Device Attestation276Figure 113 – Service primitives277Figure 114 – Time sequence diagrams278Figure 115 – Additional service parameters to control cryptographic protection and GBT288Figure 116 – Partial state machine for the client side control function320Figure 117 – Partial state machine for the server side control function321Figure 118 – MSC for successful AA establishment preceded by a successful lower layer connection establishment329Figure 119 – Graceful AA release using the A-RELEASE service334Figure 120 – Graceful AA release by disconnecting the supporting protocol layer335	
Figure 112 - Device Attestation276Figure 113 - Service primitives277Figure 114 - Time sequence diagrams278Figure 115 - Additional service parameters to control cryptographic protection and GBT288Figure 116 - Partial state machine for the client side control function320Figure 117 - Partial state machine for the server side control function321Figure 118 - MSC for successful AA establishment preceded by a successful lower layer connection establishment329Figure 119 - Graceful AA release using the A-RELEASE service334Figure 120 - Graceful AA release by disconnecting the supporting protocol layer335Figure 121 - Aborting an AA following a PH-ABORT.indication336	
Figure 112 – Device Attestation276Figure 113 – Service primitives277Figure 114 – Time sequence diagrams278Figure 115 – Additional service parameters to control cryptographic protection and GBT288Figure 116 – Partial state machine for the client side control function320Figure 117 – Partial state machine for the server side control function321Figure 118 – MSC for successful AA establishment preceded by a successful lower layer connection establishment329Figure 119 – Graceful AA release using the A-RELEASE service334Figure 120 – Graceful AA release by disconnecting the supporting protocol layer335Figure 121 – Aborting an AA following a PH-ABORT.indication336Figure 122 – MSC of the GET service339	
Figure 112 - Device Attestation276Figure 113 - Service primitives277Figure 114 - Time sequence diagrams278Figure 115 - Additional service parameters to control cryptographic protection and GBT288Figure 116 - Partial state machine for the client side control function320Figure 117 - Partial state machine for the server side control function321Figure 118 - MSC for successful AA establishment preceded by a successful lower layer connection establishment329Figure 120 - Graceful AA release using the A-RELEASE service334Figure 121 - Aborting an AA following a PH-ABORT.indication336Figure 122 - MSC of the GET service with block transfer340	
Figure 112 - Device Attestation276Figure 113 - Service primitives277Figure 114 - Time sequence diagrams278Figure 115 - Additional service parameters to control cryptographic protection and GBT288Figure 116 - Partial state machine for the client side control function320Figure 117 - Partial state machine for the server side control function321Figure 118 - MSC for successful AA establishment preceded by a successful lower layer connection establishment329Figure 120 - Graceful AA release using the A-RELEASE service334Figure 121 - Aborting an AA following a PH-ABORT.indication336Figure 123 - MSC of the GET service with block transfer340Figure 124 - MSC of the GET service with block transfer342	
Figure 112 - Device Attestation276Figure 113 - Service primitives277Figure 114 - Time sequence diagrams278Figure 115 - Additional service parameters to control cryptographic protection and GBT288Figure 116 - Partial state machine for the client side control function320Figure 117 - Partial state machine for the server side control function321Figure 118 - MSC for successful AA establishment preceded by a successful lower layer connection establishment329Figure 120 - Graceful AA release using the A-RELEASE service334Figure 121 - Aborting an AA following a PH-ABORT.indication336Figure 123 - MSC of the GET service with block transfer340Figure 124 - MSC of the GET service with block transfer343	
Figure 112 – Device Attestation276Figure 113 – Service primitives277Figure 114 – Time sequence diagrams278Figure 115 – Additional service parameters to control cryptographic protection and GBT288Figure 116 – Partial state machine for the client side control function320Figure 117 – Partial state machine for the server side control function321Figure 118 – MSC for successful AA establishment preceded by a successful lower layer329Figure 119 – Graceful AA release using the A-RELEASE service334Figure 120 – Graceful AA release by disconnecting the supporting protocol layer335Figure 121 – Aborting an AA following a PH-ABORT.indication336Figure 123 – MSC of the GET service with block transfer340Figure 124 – MSC of the GET service with block transfer343Figure 125 – MSC of the SET service with block transfer343Figure 126 – MSC of the SET service with block transfer343	
Figure 112 - Device Attestation276Figure 113 - Service primitives277Figure 114 - Time sequence diagrams278Figure 115 - Additional service parameters to control cryptographic protection and GBT288Figure 116 - Partial state machine for the client side control function320Figure 117 - Partial state machine for the server side control function321Figure 118 - MSC for successful AA establishment preceded by a successful lower layer329Figure 119 - Graceful AA release using the A-RELEASE service334Figure 120 - Graceful AA release by disconnecting the supporting protocol layer335Figure 121 - Aborting an AA following a PH-ABORT.indication336Figure 123 - MSC of the GET service with block transfer340Figure 124 - MSC of the GET service with block transfer343Figure 125 - MSC of the SET service with block transfer343Figure 126 - MSC of the SET service with block transfer343Figure 127 - MSC of the ACTION service345	
Figure 112 – Device Attestation276Figure 113 – Service primitives277Figure 114 – Time sequence diagrams278Figure 115 – Additional service parameters to control cryptographic protection and GBT288Figure 116 – Partial state machine for the client side control function320Figure 117 – Partial state machine for the server side control function321Figure 118 – MSC for successful AA establishment preceded by a successful lower layer329Figure 119 – Graceful AA release using the A-RELEASE service334Figure 120 – Graceful AA release by disconnecting the supporting protocol layer335Figure 122 – MSC of the GET service339Figure 123 – MSC of the GET service with block transfer340Figure 124 – MSC of the SET service343Figure 125 – MSC of the SET service343Figure 126 – MSC of the ACTION service343Figure 127 – MSC of the ACTION service343Figure 128 – MSC of the ACTION service with block transfer346	

Figure 131 - MSC for the Data	aNotification service	, case 1)	348
Figure 132 – MSC for the Data	aNotification service	, case 2)	349
Figure 133 – MSC for the Data	aNotification service	, case 3)	350
Figure 134 – MSC of the Read	d service used for re	ading an attribute	354
Figure 135 – MSC of the Read	d service used for in	voking a method	354
Figure 136 - MSC of the Read	d service used for re	ading an attribute, with block transf	er 355
Figure 137 – MSC of the Write	e service used for wi	iting an attribute	358
Figure 138 – MSC of the Write	e service used for in	voking a method	358
Figure 139 – MSC of the Write	e service used for wi	iting an attribute, with block transfe	r 359
Figure 140 – MSC of the Unco	onfirmedWrite servic	e used for writing an attribute	360
Figure 141 – Partial service in	vocations and GBT	APDUs	362
Figure 142 – The GBT proced	ure		365
Figure 143 – Send GBT APDL	J stream sub-proced	ure	369
Figure 145 – Check RQ and fi	II gaps sub-procedu	re	373
Figure 146 – GET service with	n GBT, switching to s	streaming	374
Figure 147 – GET service with	n partial invocations,	GBT and streaming, recovery of 4 ^t	^h block
		GBT and streaming, recovery of 4 ^t	
Figure 149 – GET service with	n partial invocations,	GBT and streaming, recovery of la	st block377
		ot supporting streaming, recovery o	
Figure 151 – ACTION-WITH-L	IST service with bi-	directional GBT and block recovery	379
Figure 152 – Unconfirmed Dat	taNotification service	with GBT with partial invocation	381
Figure 153 – Confirmed Data	Notification service w	vith GBT	382
Figure 154 – DataNotification	_Confirmed with GB	Г recovery	383
Figure 155 – Identification/add		he 3-layer, CO, HDLC based	423
Figure 157 – Example: Eventh	Notification triggered	by the client	427
		- >I	
Figure 159 – Master/ Slave or	peration on the multi	-drop bus	428
Figure 160 – Communication	architecture	·	430
Figure 161 – Examples for lov	ver-layer protocols ir	n the TCP-UDP/IP based profile(s) .	431
Figure 162 – Identification / ad	ddressing scheme in	the TCP-UDP/IP based profile(s)	432
Figure 163 – Summary of TCF	P / UDP layer service	9S	434
	-	ation profile	
-		· · · · · · · · · · · · · · · · · · ·	
Figure 166 – Mapping the DL	MS ACSE service pr	mitives to the CoAP-DATA service	
•		primitives to the CoAP-DATA servic	
• • •			
Figure 168 – Communication	architecture		445
DLMS User Association	2025-05-28	DLMS UA 1000-2 Ed. 12	7/633

Figure 169 – The	DLMS/COSEM	S-FSK PLC communication profile	
Figure 170 – Co-	existence of the	connectionless and the HDLC based	LLC sublayers 448
Figure 171 – Inte	elligent Search In	itiator process flow chart	
Figure 172 – The	e Discovery and I	Registration process	
Figure 173 – MS	C for the discove	ery and registration process	
Figure 174 – MS	C for successful	confirmed AA establishment	
Figure 175 – MS	C for releasing a	n Application Association	
Figure 176 – MS	C for an EventNo	otification service	
Figure 177 – MS	C for the Discove	ery and Registration process	
Figure 178 – MS	C for successful	confirmed AA establishment and the	GET service 469
		es of a smart metering system using	
Figure 180 – The	DLMS/COSEM	wired and wireless M-Bus communic	ation profiles 473
Figure 181 – Sur	mmary of DLMS/	COSEM M-Bus-based TL services	
Figure 182 – Ide	ntification and ac	ddressing scheme in the wired M-Bus	profile 480
Figure 183 – Linl	k Layer Address	for wireless M-Bus	
		ts	
Figure 185 – CI⊤	∟ without M-Bus o	data header	
Figure 186 – M-E	Bus communicati	on paths direct or cascaded	
Figure 187 – Wir	ed M-Bus frame	structure, none M-Bus data header	
Figure 188 – Wir	ed M-Bus frame	structure with long M-Bus data head	er 488
Figure 189 – Wir	eless M-Bus frar	ne structure w <mark>ith short ELL</mark> , no M-Bu	s data header 489
Figure 190 – Wir	eless M-Bus frar	ne structure with long ELL, no M-Bus	data header 490
Figure 191 – Wir	eless M-Bus frar	ne structure with long ELL and long N	M-Bus data header 490
Figure 192 – Dai	ly billing data wit	thout / with DLMS/COSEM security a	pplied 492
Figure 193 – MS	C for the COSEN	I-OPEN service for wired M-Bus, nor	ne M-Bus header 493
Figure 194 – MS	C the GET service	e for wired M-Bus, none M-Bus head	der 494
Figure 195 – Sho	ort wrapper		
Figure 196 – LPV	WAN (SCHC) arc	hitecture outline	
Figure 197 – The	DLMS/COSEM	LPWAN communication profile	
Figure 198 – Wi-	SUN Architectur	e (Layer 3 routing)	500
Figure 199 – Wi	-SUN communic	ation profile diagram	501
Figure 201 – Ger	neral architecture	e with gateway	508
Figure 202 – The	e fields used for p	pre-fixing the COSEM APDUs	509
Figure 203 – Pul	l message seque	ence chart	
Figure 204 – Pus	sh message sequ	ence chart	
Figure 205 – The	DLMS/COSEM	GET service on LPWAN	
		nent using the Ephemeral Unified Mo	
. .		PDU protected by an ephemeral key ECC CDH) scheme	5
		PDU protected by an ephemeral key CC CDH) scheme	
8/633	2025-05-28	DLMS UA 1000-2 Ed. 12	DLMS User Associatio

8/633	2025-05-28	DLMS UA 1000-2 Ed. 12	DLMS User Association
-------	------------	-----------------------	-----------------------

Figure D. 1 – Exchanging protected xDLMS APD	Us between TP and server: example	1 616
Figure D. 2 – Exchanging protected xDLMS APD	Us between TP and server: example	2 618
Table 1 – Client and server SAPs		
Table 2 – Reserved wrapper port numbers in the		
Table 3 – Reserved SAP numbers in the DLMS/C		
Table 4 – CoAP Request method codes		
Table 5 – CoAP Success Response codes		119
Table 6 – CoAP Options used by the DLMS/COS	EM CoAP TL	120
Table 7 – CoAP retransmission parameters		122
Table 8 – CoAP congestion control parameters		122
Table 9 - CoAP wrapper error response return. [nformative]	124
Table 10 - CoAP wrapper request/response cont	ext parameters	126
Table 11 - State transition table of the client side	LLC sublayer	167
Table 12 - State transition table of the server sid	e LLC sublayer	167
Table 13 – Table of reserved client addresses		
Table 14 - Table of reserved server addresses		170
Table 15 – Handling inopportune address lengths		
Table 16 – Control field bit assignments of comm	and and response frames	172
Table 17 – Example for parameter negotiation va	lues with the SNRM/UA frames	178
Table 18 – Summary of MAC addresses for the e	xample	183
Table 19 – Broadcast UI frame handling		183
Table 20 – Clarification of the meaning of PDU si	ze for DLMS/COSEM	203
Table 21 – Elliptic curves in DLMS/COSEM secu	ity suites	219
Table 22 – Ephemeral Unified Model key agreem	ent scheme summary	223
Table 23 – One-pass Diffie-Hellman key agreeme	ent scheme summary	224
Table 24 – Static Unified Model key agreement s	cheme summary	226
Table 25 – OtherInfo subfields and substrings		227
Table 26 – Cryptographic algorithm ID-s		227
Table 27 – DLMS/COSEM security suites		228
Table 28 – Symmetric keys types		230
Table 29 – Key information with general-cipherin	g APDU and data protection	231
Table 30 – Asymmetric keys types and their use.		233
Table 31 – X.509 v3 Certificate structure		237
Table 32 – X.509 v3 tbsCertificate fields		237
Table 33 – Naming scheme for the Root-CA insta	nce (informative)	238
Table 34 – Naming scheme for the Sub-CA insta	nce (informative)	238
Table 35 – Naming scheme for the end entity inst	ance	239
Table 36 – X.509 v3 Certificate extensions		240
Table 37 – Key Usage extensions		241
Table 38 – Subject Alternative Name values		242
Table 39 – Issuer Alternative Name values		242
DLMS User Association 2025-05-28	DLMS UA 1000-2 Ed. 12	9/633

Table 40 – Basic constraints extension values 2	242
Table 41 – Certificates handled by DLMS/COSEM end entities	243
Table 42 – Security policy values ("Security setup" version 1)	248
Table 43 – Access rights values ("Association LN" ver 3 "Association SN" ver 4)	248
Table 44 – Ciphered xDLMS APDUs	249
Table 45 – Security control byte	251
Table 46 – Plaintext and Additional Authenticated Data 2	251
Table 47 – Use of the fields of the ciphering xDLMS APDUs	254
Table 48 – Example: glo-get-request xDLMS APDU	255
Table 49 – ACCESS service with general-ciphering, One-Pass Diffie-Hellman C(1e, 1s, EC CDH) key agreement scheme	С
Table 50 – DLMS/COSEM HLS authentication mechanisms	260
Table 51 – HLS example using authentication-mechanism5 with GMAC	261
Table 52 – HLS example using authentication-mechanism 7 with ECDSA	
Table 53 – X.509 v3 Certificate structure	265
Table 54 – X.509 v3 tbsCertificate fields	265
Table 55 – Naming scheme for the Root CA 2	266
Table 56 – Naming scheme for the MICA instance	266
Table 57 – Naming scheme for the device attestation certificate	
Table 58 – Naming scheme for the QCA instance	267
Table 59 – X.509 v3 Certificate extensions	268
Table 60 – Key Usage extensions	269
Table 61 – Basic constraints extension values	269
Table 62 – Codes for AL service parameters	279
	-15
Table 63 – Service parameters of the COSEM-OPEN service primitives	
Table 63 – Service parameters of the COSEM-OPEN service primitives 2 Table 64 – Service parameters of the COSEM-RELEASE service primitives 2	280
	280 284
Table 64 – Service parameters of the COSEM-RELEASE service primitives	280 284 287
Table 64 – Service parameters of the COSEM-RELEASE service primitives 2 Table 65 – Service parameters of the COSEM-ABORT service primitives 2	280 284 287 289
Table 64 – Service parameters of the COSEM-RELEASE service primitives 2 Table 65 – Service parameters of the COSEM-ABORT service primitives 2 Table 66 – Additional service parameters 2	280 284 287 289 290
Table 64 – Service parameters of the COSEM-RELEASE service primitives 2 Table 65 – Service parameters of the COSEM-ABORT service primitives 2 Table 66 – Additional service parameters 2 Table 67 – Security parameters 2	280 284 287 289 290 291
Table 64 – Service parameters of the COSEM-RELEASE service primitives 2 Table 65 – Service parameters of the COSEM-ABORT service primitives 2 Table 66 – Additional service parameters 2 Table 67 – Security parameters 2 Table 68 – APDUs used with security protection types 2	280 284 287 289 290 291 293
Table 64 – Service parameters of the COSEM-RELEASE service primitives 2 Table 65 – Service parameters of the COSEM-ABORT service primitives 2 Table 66 – Additional service parameters 2 Table 67 – Security parameters 2 Table 68 – APDUs used with security protection types 2 Table 69 – Service parameters of the GET service 2	280 284 287 289 290 291 293 293
Table 64 – Service parameters of the COSEM-RELEASE service primitives2Table 65 – Service parameters of the COSEM-ABORT service primitives2Table 66 – Additional service parameters2Table 67 – Security parameters2Table 68 – APDUs used with security protection types2Table 69 – Service parameters of the GET service2Table 70 – GET service request and response types2	280 284 287 289 290 291 293 293 295
Table 64 – Service parameters of the COSEM-RELEASE service primitives2Table 65 – Service parameters of the COSEM-ABORT service primitives2Table 66 – Additional service parameters2Table 67 – Security parameters2Table 68 – APDUs used with security protection types2Table 69 – Service parameters of the GET service2Table 70 – GET service request and response types2Table 71 – Service parameters of the SET service2	280 284 287 289 290 291 293 293 293 295 296
Table 64 – Service parameters of the COSEM-RELEASE service primitives2Table 65 – Service parameters of the COSEM-ABORT service primitives2Table 66 – Additional service parameters2Table 67 – Security parameters2Table 68 – APDUs used with security protection types2Table 69 – Service parameters of the GET service2Table 70 – GET service request and response types2Table 71 – Service parameters of the SET service2Table 72 – SET service request and response types2	280 284 287 289 290 291 293 293 295 296 298
Table 64 – Service parameters of the COSEM-RELEASE service primitives2Table 65 – Service parameters of the COSEM-ABORT service primitives2Table 66 – Additional service parameters2Table 67 – Security parameters2Table 68 – APDUs used with security protection types2Table 69 – Service parameters of the GET service2Table 70 – GET service request and response types2Table 71 – Service parameters of the SET service2Table 72 – SET service request and response types2Table 73 – Service parameters of the ACTION service2	280 284 287 289 290 291 293 293 295 296 298 299
Table 64 – Service parameters of the COSEM-RELEASE service primitives2Table 65 – Service parameters of the COSEM-ABORT service primitives2Table 66 – Additional service parameters2Table 67 – Security parameters2Table 68 – APDUs used with security protection types2Table 69 – Service parameters of the GET service2Table 70 – GET service request and response types2Table 71 – Service parameters of the SET service2Table 72 – SET service request and response types2Table 73 – Service parameters of the ACTION service2Table 74 – ACTION service request and response types2	280 284 287 289 290 291 293 293 293 293 295 296 298 299 304
Table 64 – Service parameters of the COSEM-RELEASE service primitives2Table 65 – Service parameters of the COSEM-ABORT service primitives2Table 66 – Additional service parameters2Table 67 – Security parameters2Table 68 – APDUs used with security protection types2Table 69 – Service parameters of the GET service2Table 70 – GET service request and response types2Table 71 – Service parameters of the SET service2Table 72 – SET service request and response types2Table 73 – Service parameters of the ACTION service2Table 74 – ACTION service request and response types2Table 75 – Service parameters of the ACCESS service3	280 284 287 289 290 291 293 293 295 296 298 299 304 307
Table 64 - Service parameters of the COSEM-RELEASE service primitives2Table 65 - Service parameters of the COSEM-ABORT service primitives2Table 66 - Additional service parameters2Table 67 - Security parameters2Table 68 - APDUs used with security protection types2Table 69 - Service parameters of the GET service2Table 70 - GET service request and response types2Table 71 - Service parameters of the SET service2Table 72 - SET service request and response types2Table 73 - Service parameters of the ACTION service2Table 74 - ACTION service request and response types2Table 75 - Service parameters of the ACCESS service3Table 76 - Service parameters of the EventNotification service primitives3Table 77 - Service parameters of the EventNotification service primitives3Table 78 - Service parameters of the TriggerEventNotificationSending.request service3	280 284 287 289 290 291 293 293 295 296 298 299 304 307 308
Table 64 - Service parameters of the COSEM-RELEASE service primitives2Table 65 - Service parameters of the COSEM-ABORT service primitives2Table 66 - Additional service parameters2Table 67 - Security parameters2Table 68 - APDUs used with security protection types2Table 70 - GET service parameters of the GET service2Table 71 - Service parameters of the SET service2Table 72 - SET service request and response types2Table 73 - Service parameters of the ACTION service2Table 74 - ACTION service request and response types2Table 75 - Service parameters of the DataNotification service primitives3Table 76 - Service parameters of the TriggerEventNotificationSending.request service3	280 284 287 289 290 291 293 293 295 296 298 299 304 307 308
Table 64 – Service parameters of the COSEM-RELEASE service primitives2Table 65 – Service parameters of the COSEM-ABORT service primitives2Table 66 – Additional service parameters2Table 67 – Security parameters2Table 68 – APDUs used with security protection types2Table 69 – Service parameters of the GET service2Table 70 – GET service request and response types2Table 71 – Service parameters of the SET service2Table 72 – SET service request and response types2Table 73 – Service parameters of the ACTION service2Table 74 – ACTION service request and response types2Table 75 – Service parameters of the DataNotification service primitives3Table 76 – Service parameters of the TriggerEventNotificationSending.request service3Table 77 – Variable Access Specification3	280 284 287 289 290 291 293 293 293 295 296 298 299 304 307 308 309 310
Table 64 - Service parameters of the COSEM-RELEASE service primitives2Table 65 - Service parameters of the COSEM-ABORT service primitives2Table 66 - Additional service parameters2Table 67 - Security parameters2Table 68 - APDUs used with security protection types2Table 70 - GET service parameters of the GET service2Table 71 - Service parameters of the SET service2Table 72 - SET service request and response types2Table 73 - Service parameters of the ACTION service2Table 74 - ACTION service request and response types2Table 75 - Service parameters of the DataNotification service primitives3Table 76 - Service parameters of the TriggerEventNotificationSending.request service3	280 284 287 289 290 291 293 293 293 295 296 298 299 304 307 308 309 310

Table 81 – Use of the Variable_Access_Specification variants and the Read.response	e choices31
Table 82 – Service parameters of the Write service	
Table 83 – Use of the Variable_Access_Specification variants and the Write.response	
Table 84 – Service parameters of the UnconfirmedWrite service	
Table 85 – Use of the Variable_Access_Specification variants	
Table 86 – Service parameters of the InformationReport service	
Table 87 – Service parameters of the SetMapperTable.request service primitives	
Table 88 – Summary of ACSE services	
Table 89 – Summary of xDLMS services	318
Table 90 – Functional Unit APDUs and their fields	
Table 91 – COSEM application context names	326
Table 92 – COSEM authentication mechanism names	327
Table 93 – Cryptographic algorithm ID-s	327
Table 94 – xDLMS Conformance block	336
Table 95 – GET service types and APDUs	338
Table 96 – SET service types and APDUs	342
Table 97 – ACTION service types and APDUs	345
Table 98 – Mapping between the GET and the Read service	352
Table 99 – Mapping between the ACTION and the Read service	352
Table 100 – Mapping between the SET and the Write service	356
Table 101 – Mapping between the ACTION and the Write service	357
Table 102 – Mapping between the SET and the UnconfirmedWrite service	359
Table 103 – Mapping between the ACTION and the UnconfirmedWrite service	360
Table 104 – Mapping between the EventNotification and InformationReport services	361
Table 105 – GBT procedure state variables	367
Table 106 – xDLMS exception mechanism	384
Table 107 – Application associations and data exchange in the 3-layer, CO, HDLC ba profile	ısed 425
Table 108 – Application associations and data exchange in the TCP-UDP/IP based pr	ofile 435
Table 109 – Application associations and data exchange in the CoAP based commun profile	
Table 110 – Service parameters of the Discover service primitives	449
Table 111 – Service parameters of the Register service primitives	450
Table 112 – Service parameters of the PING service primitives	450
Table 113 – Service parameters of the RepeaterCall service primitives	452
Table 114 – Service parameters of the ClearAlarm service primitives	454
Table 115 – MAC addresses	462
Table 116 – Reserved IEC 61334-4-32 LLC addresses on the client side	462
Table 117 – Reserved IEC 61334-4-32 LLC addresses on the server side	462
Table 118 – Reserved HDLC based LLC addresses on the client side	463
Table 119 – Reserved HDLC based LLC addresses on the server side	463
Table 120 – Source and Destination APs and addresses of CI-PDUs	463

Table 121 – Application associations and data exchange in the S-FSK PLC profile using the connectionless LLC sublayer	
Table 122 – Wired M-Bus Link Layer Addresses	480
Table 123 – DLMS/COSEM M-Bus-based TL CI _{TL} values	481
Table 124 – CI fields used for link management purposes	483
Table 125 – Client and server SAPs	483
Table 126 – Application associations and data exchange in the M-Bus-based profiles	484
Table 127 – Example: Daily billing data	491
Table 128 – Reserved Application Process SAPs	495
Table 129 – Client and server SAPs	498
Table 130 – FANSPEC to Wi-SUN setup IC attribute mapping	504
Table 131 – Join states	504
Table 132 – UDP port numbering	505
Table 133 – Conformance block	513
Table 134 – A-XDR encoding the xDLMS InitiateRequest APDU	514
Table 135 – A-XDR encoding the xDLMS InitiateResponse APDU	515
Table 136 – BER encoding the AARQ APDU	
Table 137 – The complete AARQ APDU	520
Table 138 – BER encoding the AARE APDU	
Table 139 – The complete AARE APDU	525
Table 140 – A-XDR encoding of the xDLMS InitiateRequest APDU	526
Table 141 – Authenticated encryption of the xDLMS InitiateRequest APDU using service-	
specific global ciphering	
Table 142 – BER encoding of the AARQ APDU	528
Table 143 – A-XDR encoding of the xDLMS InitiateResponse APDU using service-specific global ciphering	529
Table 144 – Authenticated encryption of the xDLMS InitiateResponse APDU	530
Table 145 – BER encoding of the AARE APDU	530
Table 146 – BER encoding of the RLRQ APDU	532
Table 147 – BER encoding of the RLRE APDU	532
Table 148 – The objects used in the examples	546
Table 149 – Example: Reading the value of a single attribute without block transfer	547
Table 150 – Example: Reading the value of a list of attributes without block transfer	548
Table 151 – Example: Reading the value of a single attribute with block transfer	549
Table 152 – Example: Reading the value of a list of attributes with block transfer	552
Table 153 – Example: Writing the value of a single attribute without block transfer	555
Table 154 – Example: Writing the value of a list of attributes without block transfer	556
Table 155 – Example: Writing the value of a single attribute with block transfer	557
Table 156 – Example: Writing the value of a list of attributes with block transfer	560
Table 157 – Example: ACCESS service without block transfer	563
Table 158 – Profile generic buffer – get-response with normal encoding	570
Table 159 – Profile generic buffer – get-response with null-data compression	573
Table 160 – Profile generic buffer – get-response with compact-array encoding	576
12/633 2025-05-28 DLMS LIA 1000-2 Ed. 12 DLMS Liser Assoc	intion

12/633	2025-05-28	DLMS UA 1000-2 Ed. 12	DLMS User Association
--------	------------	-----------------------	-----------------------

Table 161 - Profile generic buffer - Get-response with null-data and delta-value encoding 57	79
Table 162 – Comparison of various encoding methods for get-response APDU 58	83
Table 163 – Combination of the various encoding methods and V.44 compression for get- response APDU	83
Table 164 – Get service example 58	84
Table 165 – Data-Notification service with Profile generic	87
Table 166 – ACCESS service	91
Table A. 1 – ECC_P256_Domain_Parameters 60	00
Table A. 2 – ECC_P384_Domain_Parameters	00
Table B. 1 – Fields of public key Certificates using P-256 signed with P-256 60	02
Table C. 1 – Test vector for key agreement using the Ephemeral Unified Model C(2e, 0s, ECCCDH) scheme	
Table C. 2 – Test vector for key agreement using the One-pass Diffie-Hellman (1e, 1s, ECC CDH) scheme	
Table C. 3 – Test vector for key agreement using the Static-Unified Model (0e, 2s, ECC CDH scheme	

DLMS User Association 2025-05-28 DLMS UA 1000-2 Ed. 12

Foreword

Copyright

© Copyright 1997-2021 DLMS User Association.

This Edition 12 of the Green Book specifies important new elements:

- A new section on attestation public key certificates and infrastructure, 9.2.8;
- A new chapter on attestation and commissioning, 16

In addition, some clarification and editorial changes have been made. See the List of main changes.

This Technical Report is confidential. It may not be copied, nor handed over to persons outside the standardisation environment.

The copyright is enforced by national and international law. The "Berne Convention for the Protection of Literary and Artistic Works" which is signed by 173 countries worldwide and other treaties apply.

Liability

DLMS User Association Publications have the form of recommendations for international use. While all reasonable efforts are made to ensure that the technical content of DLMS User Association Publications is accurate, the DLMS User Association cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

No liability shall attach to DLMS User Association or its directors, employees, servants or agents including individual experts and members of its technical committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this DLMS User Association Publication or any other DLMS User Association Publications.

Acknowledgement

This document has been established by the WG Maintenance of the DLMS UA.

Clause 9.2, Information security in DLMS/COSEM is based on parts of NIST documents. Reprinted courtesy of the National Institute of Standards and Technology, Technology Administration, U.S. Department of Commerce. Not copyrightable in the United States.

Status of standardisation

The content of Green Book Edition 11 is in line with IEC 62056-5-3:2021 Ed. 4.0, Electricity metering data exchange – The DLMS/COSEM suite – Part 5-3: DLMS/COSEM application layer.

To bring the changes in Green Book Edition 12 to international standardisation, updates to IEC 62056-5-3:2021 will be initiated by IEC TC13 WG14.

IEC TC13 WG14 will standardise the mechanisms for attestation and commissioning in the IEC 62056 series.

14/633	
--------	--

Revision history

1. Version	Date	Author	Comment
Release 1	1 st April 1998	DLMS UA	Initial version
First Edition	1 st May 2000	DLMS UA	Major rework, adapted to CDVs of IEC TC13
Second Edition	15 th May 2001	DLMS UA	Considering comments to CDVs by IEC National Committees
Third Edition	30 th March 2002	DLMS UA	Content adapted to IEC International Standards
Fourth Edition	15 th April 2004	DLMS UA	Major rework, adapted to EN and to CDs and NP of IEC TC13 (chapters 4 and 7 are new, change marks added to others)
Fifth Edition	26 th August 2005	DLMS-UA	Content aligned with IEC TC 13 CDV-s and comments received.
Sixth Edition	27 th August 2007	DLMS UA	Technical content aligned with IEC TC 13 standards published in 2006 / 2007 Document restructured. See list of changes.
			Sent to WG for approval.
Seventh Edition	22 nd December 2009	DLMS UA	Includes: - SN block transfer - Data security - S-FSK PLC profile
Eighth Edition	4 th July 2014	DLMS UA	Includes: - Security extensions; - Compression; - ACCESS service; - DataNotification service; - General block transfer mechanism; - XML schema; - Wired and wireless M-Bus profile; - SMS profile; - Gateway protocol; - Compact array encoding example.
Eighth Edition corrected	7 th July 2014	DLMS UA	Wrong Figure 139 replaced with the correct one. Missing CIASE APDU module added as 10.5.9.
Edition 8.0 Corrigendum 1	14 th December	DLMS UA	Technical and editorial Corrigendum 1 to Edition 8.0.
Edition 8.1	14th th December 2015	DLMS UA	Consolidated edition integrating Corrigendum 1.
Edition 8.2	19 th January 2017	DLMS UA	Editorial corrections. Test vector corrections. In line with IEC 62056-5-3 Ed.3.0:2017
Edition 8.3	30 th June 2017	DLMS UA	Editorial corrections. Clause added describing the use of the ConfirmedServiceError and ExceptionResponse APDUs. Extended specification of the ExceptionResponse APDU included in Abstract Syntax & XML Schema
Edition 9	8 th May 2019	DLMS UA	See below.
Edition 10	31 st Auguist 2020	DLMS UA	See below.
Edition 11	21 st December 2021	DLMS UA	See below
Edition 12		DLMS UA	See below

DLMS User Association

2025-05-28

List of main	technical	changes	in	Edition	9
List of main	commour	onunges		Latton	0

Item	Clause	Change
1.	9.1.4.4.5	Substantively replaced for clarity. Description of Block Transfer mechanisms
2.	9.1.4.4.9	Substantively replaced for clarity. Description of General Block Transfer.
3.	9.3.2	Inclusion of system title for HLS mechanisms as needed in Calling_AP_Title
4.	9.3.7	Clarification regarding response to SET.request with Attr.0
5.	9.4.6.4	Addition/Correction of response APDU in table 79
6.	9.4.6.13.2	New content clarifying the procedure of operation of the General Block Transfer (GBT)
7.	9.4.6.13.3	New content clarifying the state variables of the General Block Transfer (GBT)
8.	9.4.6.13.4	New content clarifying the stream sub-procedure of the General Block Transfer (GBT)
9.	9.4.6.13.5	New content clarifying the APDU processing sub-procedure of the General Block Transfer (GBT)
10.	9.4.6.13.6	New content clarifying the retry sub-procedure of the General Block Transfer (GBT)
11.	9.4.6.14	Paragraph moved for clarity
12.	12.2	Clarification of the example in Table 141
13.	C.1	Additions of brackets to key agreement data for clarity to Figure C.1
14.	C.2	Addition of bracket to key-info data for clarity to Figure C.2

List of main technical changes in Edition 10

ltem	Clause	Change
1.	9.1.4.3.1	Push added
2.	9.3.10	Text changed to add reliable push
3.	9.4.6.2.2	New clause for push services
4.	9.4.6.7	New description and figures for the reliable push
5.	9.5	Delta types added, syntax added for confirm push
6.	9.6	Delta types added, XML Schema added for confirm push
7.	10.8	New profile for LPWAN
8.	10.9	New profile added for Wi-SUN
9.	14.4	Profile generic IC buffer attribute encoding examples using various encoding techniques added
10.	Figure 5	Confirmed DataNotification service added to Figure
11.	Figure 88	Push added
12.	Figure 90	Push added
13.	Figure 91	Push added
14.	Figure 116	Notification services added for reliable push
15.	Figure 117	Notification services added for reliable push
16.	Table 76	.response and .confirm parameters added
17.	Table 89	Add services for reliable push

List of main technical changes in Edition 11

Item	Clause	Change
1.	9.3.10	Data notification service modifies to support CoAP reliable and unreliable push
2.	10.4	New clause covering the CoAP profile. Further modifications in clauses 4.8, and 7 to support CoAP
3.	7.3.6	New clause to support CoAP.
4.		

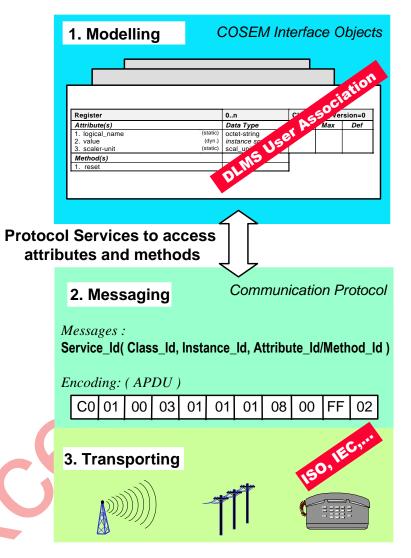
List of main technical changes in Edition 12

<mark>ltem</mark>	Clause	Change
<mark>1.</mark>	<mark>9.1.4.4.3</mark>	Added clarification on behaviour in the case of the unsolicited DataNotification.request (from Contribution 125)
<mark>2.</mark>	<mark>9.2.8</mark>	New section on attestation public key certificates and infrastructure (from Contribution 109)
<mark>3.</mark>	<mark>16</mark>	New chapter on attestation and commissioning (from Contribution 109)
4.		
5.		
6.		
7.		
8.		

DLMS User Association 2025-05-28 DLMS UA 1000-2 Ed. 12

1 Scope

The DLMS/COSEM specification specifies an interface model and communication protocols for data exchange with connected devices.


The interface model provides a view of the functionality of the device as it is available at its interface(s). It uses generic building blocks to model this functionality. The model does not cover internal, implementation-specific issues.

Communication protocols define how the data can be accessed and transported.

The DLMS/COSEM specification follows a three-step approach as illustrated in

Figure 1:

- Step 1, Modelling: This covers the interface model of a device and rules for data identification;
- Step 2, Messaging: This covers the services for mapping the interface model to protocol data units (APDU) and the encoding of this APDUs.
- Step 3, Transporting: This covers the transportation of the messages through the communication channel.

Figure 1 – The three steps approach of COSEM: Modelling – Messaging – Transporting

Step 1 is specified in the document "COSEM interface classes and the OBIS identification system" DLMS UA 1000-1. It specifies the COSEM interface classes, the OBIS identification system used to identify instances of these classes, called interface objects, and the use of interface objects for modelling the various functions of the device.

Step 2 and 3 are specified in this Technical Report.

The DLMS/COSEM application layer (AL) specifies the services to establish logical connections between a client and (a) server(s) and the services to access attributes and methods of the COSEM objects. The DLMS/COSEM AL is specified in Clause 9.

DLMS/COSEM communication media specific profiles specify how application layer messages can be transported over various communication media. Each communication profile specifies the set of the protocol layers required to support the DLMS/COSEM AL on top. See also 4.8.

Large scale deployment of smart connected systems requires strong information security mechanisms to protect the privacy of consumers, the business interests of the service providers and the security of the infrastructure.

18/633 2025-05-28 DLMS UA 1000-2 E	d. 12 DLMS User Association
------------------------------------	-----------------------------

DLMS/COSEM provides built-in security mechanisms from the outset. Initially, it provided mechanisms for the identification and authentication of clients and servers, as well as specific access rights to COSEM object attributes and methods within application associations (AAs) established between a client and a server. Ciphered APDUs were also available to allow protecting the messages exchanged between clients and servers.

In the next step, the details of ciphering using symmetric key algorithms, providing authentication and encryption as well as key transport mechanisms have been specified.

Rules for conformance testing are specified in the document DLMS UA 1001-1 "DLMS/COSEM Conformance Test Process".

Terms are explained in Clause 3 and in DLMS UA 1002 "COSEM Glossary of Terms".

DLMS User Association

2025-05-28

DLMS UA 1000-2 Ed. 12

© Copyright 1997-2025 DLMS User Association

2 Normative references

Ref.	Title
DLMS UA 1000-1 Part 2 Ed.17:2025	COSEM Interface Classes and OBIS Identification System, the "Blue Book"
	COSEM Interface Classes and OBIS Identification System, the "Blue Book"
DLMS UA 1000-1 Part 1	NOTE This undated reference is used unless a specific clause needs to be referenced.
DLMS UA 1001-1	DLMS/COSEM Conformance test and certification process, the "Yellow Book"
DLMS UA 1002 Ed. 1.0:2003	COSEM Glossary of Terms, "White Book"
IEC 61334-4-1:1996	Distribution automation using distribution line carrier systems – Part 4: Data communication protocols – Section 1: Reference model of the communication system
IEC 61334-4-32:1996	Distribution automation using distribution line carrier systems – Part 4: Data communication protocols – Section 32: Data link layer – Logical link control (LLC)
IEC 61334-4-41:1996	Distribution automation using distribution line carrier systems – Part 4: Data communication protocols – Section 41: Application protocol – Distribution line message specification
IEC 61334-4-511:2000	Distribution automation using distribution line carrier systems – Part 4-511: Data communication protocols – Systems management – CIASE protocol
IEC 61334-5-1:2001	Distribution automation using distribution line carrier systems – Part 5-1: Lower layer profiles – The spread frequency shift keying (S-FSK) profile
IEC 61334-6:2000	Distribution automation using distribution line carrier systems – Part 6: A-XDR encoding rule
IEC 62056-1-0	Electricity metering data exchange – The DLMS/COSEM suite – Part 1 0: Smart metering standardisation framework
IEC 62056-21:2002	Electricity metering – Data exchange for meter reading, tariff and load control – Part 21: Direct local data exchange
IEC 62056-8-20:2016	Electricity metering data exchange - The DLMS/COSEM suite - Part 8-20: Mesh communication profile for neighbourhood networks
ISO/IEC 7498-1:1994	Information technology - Open Systems Interconnection - Basic Reference Model: The Basic Model
ISO/IEC 8649 Ed. 2.0:1996	Information technology – Open Systems Interconnection – Service definition for the Association Control Service Element
	NOTE This standard has been replaced by ISO/IEC 15953:1999
ISO/IEC 8650-1 Ed 2.0:1996	Information technology – Open systems interconnection – Connection-oriented protocol for the association control service element: Protocol specification
	NOTE This standard has been replaced by ISO/IEC 15954:1999
ISO/IEC 8802-2 Ed. 3.0:1998	Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 2: Logical link control
ISO/IEC 8824:2008	Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation
ISO/IEC 8825-1:2015	Information technology - ASN.1 encoding rules: Specification of : Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER).
ISO/IEC 13239:2002	Information Technology – Telecommunications and information exchange between systems – High-level data link control (HDLC) procedures
ISO/IEC 15953:1999	Information technology — Open Systems Interconnection — Service definition for the Application Service Object Association Control Service Element NOTE This standard cancels and replaces ISO/IEC 8649:1996 and its Amd. 1:1997 and Amd. 2:1998, of which it constitutes a technical revision.
ISO/IEC 15954:1999	Information technology — Open Systems Interconnection — Connection-mode protocol for the Application Service Object Association Control Service Element

20/633

2025-05-28

DLMS UA 1000-2 Ed. 12

DLMS User Association

	NOTE This standard cancels and replaces ISO/IEC 8650-1:1999 and its Amd. 1:1997 and Amd. 2:1998, of which it constitutes a technical revision.			
EN13757-1:2014	Communication system for and remote reading of meters – Part 1: Data exchange			
EN 13757-2:2004	Communication system for and remote reading of meters – Part 2 : Physical and Link Layer, Twisted Pair Baseband (M-Bus)			
EN 13757-3:2018	Communication systems for meters - Part 3: Application protocols			
EN 13757-4:2013	Communication system for and remote reading of meters – Part 4: Wireless meter (Radio meter reading for operation in SRD bands)			
EN 13757-5:2015	Communication system for and remote reading of meters – Part 5: Wireless relaying			
EN 13757-6:2015	Communication system for meters – Part 6: Local Bus			
EN 13757-7:2018	Communication systems for meters - Part 7: Transport and security services			
ETSI-TS-102-887-2	Electromagnetic compatibilityand Radio spectrum Matters (ERM); Short Range Devices; Smart Metering Wireless Access Protocol; Part 2: Data Link Layer (MAC Sub-layer)			
IEEE 802.1ar	IEEE Standard for Local and Metropolitan Area Networks – Secure Device Identity, IEEE Std 802.1AR-2009			
IEEE 802.1X	IEEE Standard for Local and Metropolitan Area Networks – Port Based Network Access Control", IEEE Std 802.1X-2010			
IEEE 802.11i	IEEE Standard for Information Technology— Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications IEEE Std 802.11-2012			
	NOTE the 802.11i amendment was specifically for the inclusion of Wi-Fi Protected Access (WPA 2) security which is the part that is relevant to this standard.			
IEEE 802.15.4	IEEE Standard for Low-Rate Wireless Networks			
ITU-T V.44: 2000	SERIES V: DATA COMMUNICATION OVER THE TELEPHONE NETWORK – Error control – V.44:2000, Data compression procedures			
ITU-T X.211	SERIES X: DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY – Information technology – Open systems interconnection – Physical Service Definition			
ITU-T X.509:2008	SERIES X: DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY – Information technology – Open systems interconnection – The Directory: Public-key and attribute certificate frameworks			
ITU-T X.693 (11/2008)	Information technology – ASN.1 encoding rules: XML Encoding Rules (XER)			
ITU-T X.693 Corrigendum 1(10/2011)	Information technology – ASN.1 encoding rules: XML Encoding Rules (XER) Technical Corrigendum 1			
ITU-T X.694 (11/2008)	Information technology – ASN.1 encoding rules: Mapping W3C XML schema definitions into ASN.1			
ITU-T X.694 Corrigendum 1 (10/2011)	Information technology – ASN.1 encoding rules: Mapping W3C XML schema definitions into ASN.1Technical Corrigendum 1			
ANSI C12.21:1999	Protocol Specification for Telephone Modem Communication			
FIPS PUB 180-4:2012	Secure Hash Standard (SHS)			
FIPS PUB 186-4:2013	Digital Signature Standard (DSS)			
FIPS PUB 197:2001	Advanced Encryption Standard (AES)			
LoRaWAN Spec 1.0.3	https://lora-alliance.org/resource-hub/lorawanr-specification-v103.			
NIST SP 800-21:2005	Guideline for Implementing Cryptography in the Federal Government			
NIST SP 800-32:2001	Introduction to Public Key Technology and the Federal PKI Infrastructure			
NIST SP 800-38D:2007	Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC			
NIST SP 800-56A Rev. 2: 2013	Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography			
NIST SP 800-57:2012	Recommendation for Key Management – Part 1: General (Revision 3)			
NSA1	Suite B Implementer's Guide to FIPS 186-3 (ECDSA), Feb 3rd 2010			
DLMS User Association	2025-05-28 DLMS UA 1000-2 Ed. 12 21/633			

NSA2	Suite B Implementer's Guide to NIST SP800-56A, 28th July 2009	
NSA3	NSA Suite B Base Certificate and CRL Profile, 27th May 2008	
[FANSPEC]	Wi-SUN Alliance: Field Area Network Working Group (FANWG):Technical Profile Specification:Field Area Network:Version 1v26.	
[PHYSPEC]	Wi-SUN Alliance: PHY Working Group (PHYWG) Wi-SUN PHY Specification Revision 1V02	
ANSI/TIA-4957.200	Layer 2 Standard Specification for the Smart Utility Network	
ANSI/TIA 4957.210	Multi-Hop Sublayer Specification-Extension on Field Area Networks	
0	able on line from the Internet Enegineering Task Force (IETF): <u>dex.txt</u> , https://www.ietf.org/rfc/	
RFC 768	User Datagram Protocol	
RFC 793	Transmission Control Protcol	
RFC 1213	Management Information Base for Network Management of TCP/IP-based internets: MIB-II	
RFC 2460	Internet Protocol, Version 6	
RFC 3315	Dynamic Host Configuration Protocol for IPv6 (DHCPv6)	
RFC 3394	Advanced Encryption Standard (AES) Key Wrap Algorithm, 2002	
RFC 4108	Using Cryptographic Message Syntax (CMS) to Protect Firmware Packages, 2005	
RFC 4291	IP Version 6 Addressing Architecture	
RFC 4443	Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification	
RFC 4944	Transmission of IPv6 Packets over IEEE 802.15.4 Networks	
RFC 5216	The EAP-TLS Authentication Protocol	
RFC 5280	Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile	
RFC 6206	The Trickle Algorithm	
RFC 6282	Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks	
RFC 6550	RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks	
RFC 6775	Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks 409 (6LoWPANs)	
RFC 7217	A Method for Generating Semantically Opaque Interface Identifiers with IPv6 Stateless Address Autoconfiguration (SLAAC). Edited by F. Gont.	
RFC 7731	Multicast Protocol for Low-Power and Lossy Networks (MPL)	
RFC 7252	The Constrained Application Protocol.	
RFC 7774	Multicast Protocol for Low-Power and Lossy Networks (MPL) Parameter Configuration Option for DHCPv6	
RFC 7959	Block-Wise Transfers in the Constrained Application Protocol (CoAP)	
RFC 8376	Low-Power Wide Area Network (LPWAN) Overview. Edited by S. Farrell, May 2018.	
RFC 8724	SCHC – Generic Framework for Static Context Header Compression and Fragmentation. April 2020.	
IETF Internet Draft	Static Context Header Compression (SCHC) over LoRaWAN.	
STD0005 (1981)	Internet Protocol. Also: RFC0791, RFC0792, RFC0919, RFC0922, RFC0950, RFC1112	
STD0006 (1980)	User Datagram Protocol. Also: RFC0768	
STD0007 (1981)	Transmission Control Protocol. Also: RFC0793	

22/633

2025-05-28

DLMS UA 1000-2 Ed. 12

DLMS User Association

3 Terms, definitions and abbreviations and symbols

3.1 General DLMS/COSEM definitions

3.1.1

ACSE APDU

APDU used by the Association Control Service Element (ACSE)

3.1.2

application association

cooperative relationship between two application entities, formed by their exchange of application protocol control information through their use of presentation services

3.1.3

application context

set of application service elements, related options and any other information necessary for the interworking of application entities in an application association

3.1.4

application entity

the system-independent application activities that are made available as application services to the application agent, e.g., a set of application service elements that together perform all or part of the communication aspects of an application process

3.1.5

application process

an element within a real open system which performs the information processing for a particular application

[SOURCE: ISO/IEC 7498-1:1994, 4.1.4]

3.1.6

authentication mechanism

the specification of a specific set of authentication-function rules for defining, processing, and transferring authentication-values

[SOURCE: ISO/IEC 15953:1999, 3.5.11]

3.1.7

block

one portion of an xDLMS APDU; the payload of a GBT APDU

3.1.8

client

application process running in the data collection system

3.1.9

client/server

relationship between two computer programs in which one program, the client, makes a service request from another program, the server, which fulfils the request

3.1.10

confirmed GBT procedure

procedure in which the sender sends streams of GBT APDUs and at the end of each stream the recipient acknowledges the blocks received and attempts recovering any missing blocks

Note 1 to entry: A GBT stream consists of one or more GBT APDUs.

DLMS User Association	2025-05-28	DLMS UA 1000-2 Ed. 12	23/633
-----------------------	------------	-----------------------	--------

Note 2 to entry: In the case of a confirmed GBT stream the end of the stream is indicated by the streaming bit to set to FALSE (0). In the case of an unconfirmed GBT stream the end of the stream is indicated by the Final bit set to TRUE (1).

3.1.11

COSEM

Comprehensive Semantic Model for Energy Management; refers to the COSEM object model

3.1.12

COSEM APDU

comprises ACSE APDUs and xDLMS APDUs

3.1.13

COSEM data

COSEM object attribute values, method invocation and return parameters

3.1.14

COSEM interface class

entity with specific set of attributes and methods modelling a certain function on its own or in relation with other COSEM interface classes

3.1.15

COSEM object

instance of a COSEM interface class

3.1.16

DLMS/COSEM

refers to the application layer providing xDLMS services to access COSEM interface object attributes. Also refers to the DLMS/COSEM Application layer and the COSEM data model together.

3.1.17

DLMS context

a specification of the service elements of DLMS and semantics of communication to be used during the lifetime of an application association

[SOURCE: IEC 61334-4-41:1996, 3.3.5]

3.1.18

entity authentication

corroboration that an entity is the one claimed

[SOURCE: ISO/IEC 9798-1:2010, 3.14]

3.1.19

gap

empty space i.e. missing blocks in the receive queue RQ

Note to entry: A receive queue RQ may have one or more gaps. In each gap, one or more blocks may be missing.

3.1.20

GBT APDU

xDLMS APDU with control information that carries a block of another xDLMS APDU or an empty block

3.1.21

GBT exchange

exchanging GBT APDUs that carry the service primitives of the same service

24/633 2025-05-28	DLMS UA 1000-2 Ed. 12	DLMS User Association
-------------------	-----------------------	-----------------------

3.1.22

GBT stream

a sequence of GBT APDUs

3.1.23

general block transfer

GBT

DLMS/COSEM application layer mechanism that can transfer any other xDLMS APDU that would be otherwise too long to fit into the maximum APDU size negotiated, in several blocks.

Note to entry: GBT can be forced by including GBT parameters in the .request service primitive.

3.1.24

logical device

abstract entity within a physical device, representing a subset of the functionality modelled with COSEM objects

3.1.25

master

central station - station which takes the initiative and controls the data flow

3.1.26

message

xDLMS APDU carrying a service primitive in an encoded form, which may also be cryptographically protected

3.1.27

mutual authentication

entity authentication which provides both entities with assurance of each other's identity

Note to entry: The DLMS/COSEM HLS authentication mechanism provides mutual authentication.

[SOURCE: ISO/IEC 9798-1:2010, 3.18 modified by adding Note 1]

3.1.28

overflow

more GBT APDUs received in one stream than the size of the GBT window

3.1.29

physical device

the highest level element used in the COSEM interface model of devices

3.1.30

pull operation

style of communication where the request for a given transaction is initiated by the client

3.1.31

push operation

style of communication where the request for a given transaction is initiated by the server

3.1.32

receive queue

RQ placeholder for the blocks of the APDU received in a GBT stream

3.1.33

server

an application process running in a device

DLMS User Association 2025-05-28

3.1.34

send queue

SQ

placeholder for the blocks of the APDU to be sent

3.1.35

service-specific block transfer

DLMS/COSEM application layer mechanism that can transfer an xDLMS APDU corresponding to a specific service primitive, that would be otherwise too long to fit into the maximum APDU size negotiated, in several blocks

3.1.36

streaming window

number of GBT APDUs that can be received in a stream

3.1.37

slave

station responding to requests of a master station.

Note to entry: A device is normally a slave station.

3.1.38

system title

unique identifier of the system

3.1.39

unconfirmed GBT procedure

procedure in which the sender sends and the recipient receives a single stream of GBT APDUs, the recipient does not acknowledge the blocks received and does not attempt to recover any blocks lost

Note to entry: This is used to carry unconfirmed service requests from the client to the server or unsolicited service requests from the server to the client.

3.1.40

unilateral authentication

entity authentication which provides one entity with assurance of the other's identity but not vice versa

Note to entry: The DLMS/COSEM LLS authentication mechanism provides unilateral authentication.

[SOURCE: ISO/IEC 9798-1:2010, 3.39]

3.1.41

xDLMS

extended DLMS; refers to the DLMS protocol with the extensions specified in this Technical Report

3.1.42

xDLMS APDU

APDU used by the xDLMS Application Service Element (xDLMS ASE)

3.1.43

xDLMS message

xDLMS APDU exchanged between a client and a server or between a third party and a server

26/633 2025-05-28	DLMS UA 1000-2 Ed. 12	DLMS User Association
-------------------	-----------------------	-----------------------

3.2 Definitions related to cryptographic security

3.2.1

access control

restricts access to resources to only privileged entities.

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.2

asymmetric key algorithm

see Public key cryptographic algorithm

3.2.3

authentication

a process that establishes the source of information, provides assurance of an entity's identity or provides assurance of the integrity of communications sessions, messages, documents or stored data.

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.4

authentication code

a cryptographic checksum based on an approved security function (also known as a Message Authentication Code)

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.5

certificate

see public key certificate

3.2.6

Certification Authority

CA the entity in a Public Key Infrastructure (PKI) that is responsible for issuing public key certificates and exacting compliance to a PKI policy

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

3.2.7

Certificate Policy

СР

a specialized form of administrative policy tuned to electronic transactions performed during certificate management. A Certificate Policy addresses all aspects associated with the generation, production, distribution, accounting, compromise recovery, and administration of digital certificates. Indirectly, a certificate policy can also govern the transactions conducted using a communications system protected by a certificate-based security system. By controlling critical certificate extensions, such policies and associated enforcement technology can support provision of the security services required by particular applications.

[SOURCE: NIST SP 800-32:2001]

3.2.8

challenge

a time variant parameter generated by a verifier

[SOURCE: ITU-T X.811:1995, 3.8]

DLMS User Association

2025-05-28

ciphering

authentication and / or encryption using symmetric key algorithms

3.2.10

ciphertext

data in its encrypted form

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.11

cofactor

the order of the elliptic curve group divided by the (prime) order of the generator point (i.e. the base point) specified in the domain parameters

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

3.2.12

confidentiality

the property that sensitive information is not disclosed to unauthorized entities

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.13

cryptographic algorithm

a well-defined computational procedure that takes variable inputs including a cryptographic key and produces an output

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.14

cryptographic key

key

a parameter used in conjunction with a cryptographic algorithm that determines its operation in such a way that an entity with knowledge of the key can reproduce or reverse the operation, while an entity without knowledge of the key cannot

Note to entry:

Examples include:

- 1. The transformation of plaintext data into ciphertext data,
- 2. The transformation of ciphertext data into plaintext data,
- 3. The computation of a digital signature from data,
- 4. The verification of a digital signature,
- 5. The computation of an authentication code from data,
- 6. The verification of an authentication code from data and a received authentication code,
- 7. The computation of a shared secret that is used to derive keying material.

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.15

cryptoperiod

the time span during which a specific key is authorized for use or in which the keys for a given system or application may remain in effect

[SOURCE: NIST SP 800-57:2012, Part 1]

28/633 2025-05-28	DLMS UA 1000-2 Ed. 12	DLMS User Association
-------------------	-----------------------	-----------------------

dedicated key

in DLMS/COSEM, a symmetric key used within a single instance of an Application Association. See also session key

3.2.17

deprecated

not recommended for new implementations

3.2.18

digital signature

the result of a cryptographic transformation of data that, when properly implemented with supporting infrastructure and policy, provides the services of:

1. origin authentication

2. data integrity, and

3. signer non-repudiation

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.19

directly trusted CA

a directly trusted CA is a CA whose public key has been obtained and is being stored by an end entity in a secure, trusted manner, and whose public key is accepted by that end entity in the context of one or more applications

[SOURCE: ISO/IEC 15945:2002, 3.4]

3.2.20

directly trusted CA key

a directly trusted CA key is a public key of a directly trusted CA. It has been obtained and is being stored by an end entity in a secure, trusted manner. It is used to verify certificates without being itself verified by means of a certificate created by another CA.

Note to entry: Directly trusted CAs and directly trusted CA keys may vary from entity to entity. An entity may regard several CAs as directly trusted CAs.

[SOURCE: ISO/IEC 15945:2002, 3.5]

3.2.21

distribution see key distribution

3.2.22

domain parameters

the parameters used with a cryptographic algorithm that are common to a domain of users

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

3.2.23

encryption

the process of changing plaintext into ciphertext using a cryptographic algorithm and key

[SOURCE: NIST SP 800-57:2012, Part 1]

DLMS User Association

2025-05-28

ephemeral key

a cryptographic key that is generated for each execution of a key establishment process and that meets other requirements of the key type (e.g., unique to each message or session). In some cases ephemeral keys are used more than once, within a single "session (e.g., broadcast applications) where the sender generates only one ephemeral key pair per message and the private key is combined separately with each recipient's public key.

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.25

global key

a key that is intended for use for a relatively long period of time and is typically intended for use in many instances of a DLMS/COSEM Application Association, see also static symmetric key

3.2.26

hash function

a function that maps a bit string of arbitrary length to a fixed-length bit string. Approved hash functions satisfy the following properties:

- 1) One-way: It is computationally infeasible to find any input that maps to any pre-specified output, and
- 2) Collision resistant: It is computationally infeasible to find any two distinct inputs that map to the same output.

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.27

hash value

the result of applying a hash function to information

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.28

initialization vector

IV

a vector used in defining the starting point of a cryptographic process

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.29

identification

the process of verifying the identity of a user, process, or device, usually as a prerequisite for granting access to resources in an IT system

[SOURCE: NIST SP 800-47:2002]

3.2.30

key

see cryptographic key

3.2.31

key agreement

a (pair-wise) key-establishment procedure in which the resultant secret keying material is a function of information contributed by both participants, so that neither party can predetermine the value of the secret keying material independently from the contributions of the other party. Contrast with keytransport.

30/633 2025-05-28	DLMS UA 1000-2 Ed. 12	DLMS User Association
-------------------	-----------------------	-----------------------

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

3.2.32

key-confirmation

a procedure to provide assurance to one party (the key-confirmation recipient) that another party (the key-confirmation provider) actually possesses the correct secret keying material and/or shared secret

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

3.2.33

key-derivation function

a function by which keying material is derived from a shared secret (or a key) and other information

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

3.2.34

key distribution

the transport of a key and other keying material from an entity that either owns the key or generates the key to another entity that is intended to use the key

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.35

key-encrypting key

a cryptographic key that is used for the encryption or decryption of other keys

Note to entry: In DLMS/COSEM it is the master key.

[SOURCE: NIST SP 800-57:2012 Part 1, modified by adding the Note]

3.2.36

key establishment

the procedure that results in keying material that is shared among different parties

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

3.2.37

key pair

a public key and its corresponding private key; a key pair is used with a public key algorithm

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.38

key revocation

a function in the lifecycle of keying material; a process whereby a notice is made available to affected entities that keying material should be removed from operational use prior to the end of the established cryptoperiod of that keying material

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.39

key-transport

a (pair-wise) key-establishment procedure whereby one party (the sender) selects a value for the secret keying material and then securely distributes that value to another party (the receiver). Contrast with key agreement.

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

key wrapping

a method of encrypting keying material (along with associated integrity information) that provides both confidentiality and integrity protection using a symmetric key

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.41

message authentication code

MAC

a cryptographic checksum on data that uses a symmetric key to detect both accidental and intentional modifications of data

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.42

message digest

the result of applying a hash function to a message. Also known as "hash value".

[SOURCE: FIPS PUB 186-4:2013]

3.2.43

named curve

a set of ECDH domain parameters is also known as a "curve". A curve is a "named curve" if the domain parameters are well known and defined and can be identified by an Object Identifier; otherwise, it is called a "custom curve".

[SOURCE: RFC 5349]

3.2.44

nonce

a time-varying value that has at most an acceptably small chance of repeating. For example, the nonce may be a random value that is generated anew for each use, a timestamp, a sequence number, or some combination of these.

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

3.2.45

non-repudiation

a service that is used to provide assurance of the integrity and origin of data in such a way that the integrity and origin can be verified by a third party as having originated from a specific entity in possession of the private key of the claimed signatory

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.46

password

a string of characters (letters, numbers and other symbols) that are used to authenticate an identity or to verify access authorization or to derive cryptographic keys.

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.47

plaintext

intelligible data that has meaning and can be understood without the application of decryption

[SOURCE: NIST SP 800-57:2012, Part 1]

32/633 2025-05-28 DLMS UA 1000-2 Ed. 12 DLMS User Associ	32/633	2025-05-28	DLMS UA 1000-2 Ed. 12	DLMS User Associatio
--	--------	------------	-----------------------	----------------------

private key

a cryptographic key, used with a public key cryptographic algorithm, which is uniquely associated with an entity and is not made public. In an asymmetric (public) cryptosystem, the private key is associated with a public key. Depending on the algorithm, the private key may be used, for example, to:

1) Compute the corresponding public key,

- 2) Compute a digital signature that may be verified by the corresponding public key,
- 3) Decrypt keys that were encrypted by the corresponding public key, or
- 4) Compute a shared secret during a key-agreement transaction.

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.49

protected

ciphered and /or digitally signed. Protection may be applied to xDLMS APDUs and/or to COSEM data.

3.2.50

public key

a cryptographic key used with a public key cryptographic algorithm that is uniquely associated with an entity and that may be made public. In an asymmetric (public) cryptosystem, the public key is associated with a private key. The public key may be known by anyone and, depending on the algorithm, may be used, for example, to:

- 1) Verify a digital signature that is signed by the corresponding private key,
- 2) Encrypt keys that can be decrypted using the corresponding private key, or
- 3) Compute a shared secret during a key-agreement transaction.

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.51

public-key certificate

a data structure that contains an entity's identifier(s), the entity's public key (including an indication of the associated set of domain parameters) and possibly other information, along with a signature on that data set that is generated by a trusted party, i.e. a certificate authority, thereby binding the public key to the included identifier(s).

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

3.2.52

public key (asymmetric) cryptographic algorithm

a cryptographic algorithm that uses two related keys, a public key and a private key. The two keys have the property that determining the private key from the public key is computationally infeasible.

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.53

Public Key Infrastructure PKI

a framework that is established to issue, maintain and revoke public key certificates.

[SOURCE: NIST SP 800-57:2012, Part 1]

DLMS User Association

2025-05-28

receiver <key-transport>

the party that receives secret keying material via a key-transport transaction. Contrast with sender.

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

3.2.55

revoke a certificate

to prematurely end the operational period of a certificate effective at a specific date and time

[SOURCE: NIST SP 800-32:2001]

3.2.56

Root Certification Authority

in a hierarchical Public Key Infrastructure, the Certification Authority whose public key serves as the most trusted datum (i.e., the beginning of trust paths) for a security domain

[SOURCE: NIST SP 800-32:2001]

3.2.57

secret key

a cryptographic key that is used with a secret key (symmetric) cryptographic algorithm that is uniquely associated with one or more entities and is not made public. The use of the term "secret" in this context does not imply a classification level, but rather implies the need to protect the key from disclosure

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.58

security services

mechanisms used to provide confidentiality, data integrity, authentication or non-repudiation of information

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.59

security strength

(also "bits of security")

a number associated with the amount of work (that is, the number of operations) that is required to break a cryptographic algorithm or system

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

3.2.60

self-signed certificate

a public key certificate whose digital signature may be verified by the public key contained within the certificate. The signature on a self-signed certificate protects the integrity of the data, but does not guarantee authenticity of the information. The trust of self-signed certificates is based on the secure procedures used to distribute them.

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.61

sender <key-transport>

the party that sends secret keying material to the receiver in a key-transport transaction. Contrast with receiver.

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

34/633	2025-05-28	DLMS UA 1000-2 Ed. 12	DLMS User Association

session key

cryptographic key established for use for a relatively short period of time. In DLMS/COSEM the dedicated key is a session key.

3.2.63

shared secret

a secret value that has been computed using a key agreement scheme and is used as input to a keyderivation function/method

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.64

signature generation

uses a digital signature algorithm and a private key to generate a digital signature on data

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.65

signature verification

uses a digital signature algorithm and a public key to verify a digital signature on data

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.66

signed data

data upon which a digital signature has been computed

3.2.67

static symmetric key

key that is intended for use for a relatively long period of time and is typically intended for use in many instances of a DLMS/COSEM Application Association

Note to entry: In DLMS/COSEM it is known as global key.

3.2.68

static key

a key that is intended for use for a relatively long period of time and is typically intended for use in many instances of a cryptographic key establishment scheme. Contrast with an ephemeral key.

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.69

Subordinate Certification Authority

in a hierarchical PKI, a Certification Authority (CA) whose certificate signature key is certified by another CA, and whose activities are constrained by that other CA

[SOURCE: NIST SP 800-32:2001]

3.2.70

symmetric key

a single cryptographic key that is used with a secret (symmetric) key algorithm

[SOURCE: NIST SP 800-57:2012, Part 1]

DLMS User Association

2025-05-28

3.2.71

symmetric key algorithm

a cryptographic algorithm that uses the same secret key for an operation and its complement (e.g., encryption and decryption)

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.72

trust anchor

a public key and the name of a certification authority that is used to validate the first certificate in a sequence of certificates. The trust anchor public key is used to verify the signature on a certificate issued by a trust anchor certification authority. The security of the validation process depends upon the authenticity and integrity of the trust anchor. Trust anchors are often distributed as self-signed certificates.

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.73

trusted party

a trusted party is a party that is trusted by an entity to faithfully perform certain services for that entity. An entity could be a trusted party for itself.

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

3.2.74

trusted third party

a third party, such as a CA, that is trusted by its clients to perform certain services. (By contrast, in a key establishment transaction, the participants, parties U and V, are considered to be the first and second parties.)

[SOURCE: NIST SP 800-56A Rev. 2: 2013]

3.2.75

X.509 certificate

the X.509 public-key certificate or the X.509 attribute certificate, as defined by the ISO/ITU-T X.509 standard. Most commonly (including in this document), an X.509 certificate refers to the X.509 public-key certificate.

[SOURCE: NIST SP 800-57:2012, Part 1]

3.2.76

X.509 public key certificate

a digital certificate containing a public key for entity and a name for the entity, together with some other information that is rendered unforgeable by the digital signature of the certification authority that issued the certificate, encoded in the format defined in the ISO/ITU-T X.509 standard.

[SOURCE: NIST SP 800-57:2012, Part 1]

	36/633	2025-05-28	DLMS UA 1000-2 Ed. 12	DLMS User Association
--	--------	------------	-----------------------	-----------------------

3.3 Definitions and abbreviations related to the Galois/Counter Mode

The source of the definitions 3.3.1 to 3.3.13 abbreviations and symbols in this subclause is NIST SP 800-38D:2007.

3.3.1

Additional Authenticated Data

AAD

input data to the authenticated encryption function that is authenticated but not encrypted

3.3.2

authenticated decryption

function of GCM in which the ciphertext is decrypted into the plaintext, and the authenticity of the ciphertext and the AAD are verified

3.3.3

authenticated encryption

function of GCM in which the plaintext is encrypted into the ciphertext and an authentication tag is generated on the AAD and the ciphertext

3.3.4

authentication tag

Tag, T

cryptographic checksum on data that is designed to reveal both accidental errors and the intentional modification of the data

3.3.5

block cipher

parameterized family of permutations on bit strings of a fixed length; the parameter that determines the permutation is a bit string called the key

3.3.6

ciphertext

encrypted form of the plaintext

3.3.7

fixed field

in the deterministic construction of IVs, the field that identifies the device or context for the instance of the authenticated encryption function

3.3.8

fresh

for a newly generated key, the property of being unequal to any previously used key

3.3.9

GCM

Galois/Counter Mode

3.3.10

initialization Vector

IV

nonce that is associated with an invocation of authenticated encryption on a particular plaintext and AAD

Note to entry: For the purposes of this standard, the invocation field is the invocation counter.

DLMS User Association 20

2025-05-28

DLMS UA 1000-2 Ed. 12

37/633

3.3.11

invocation field

in the deterministic construction of IVs, the field that identifies the sets of inputs to the authenticated encryption function in a particular device or context

3.3.12

key

parameter of the block cipher that determines the selection of the forward cipher function from the family of permutations

3.3.13

plaintext

Ρ

input data to the authenticated encryption function that is both authenticated and encrypted

3.3.14

security control byte

SC

byte that provides information on the ciphering applied

3.3.15

security header

SH

concatenation of the security control byte SC and the invocation counter: $SH = SC \parallel IC$.

3.4 Definitions and abbreviations related to Wi-SUN

3.4.1

border router node

device that acts as the control point for multiple router devices across a large network

3.4.2

leaf node

device that does not provide any routing capability

3.4.3

operating class

with regulatory domain, reference to regionally allowable frequency bands

NOTE to entry: Regulatory Domains and frequency bands are defined in [FANSPEC].

3.4.4

Personal Area Network (PAN)

network area subservient to a border router node

3.4.5

regulatory domain with operating class, reference to regionally allowable frequency bands

NOTE to entry: Regulatory Domains and frequency bands are defined in [FANSPEC]

3.4.6

router/forwarding node

device that manages messages between end nodes and the border router

38/633 2025	5-05-28 DLMS UA 1000-2	Ed. 12 DLMS User Association
-------------	------------------------	------------------------------

3.5 General abbreviations	3.5	General abbreviations
---------------------------	-----	-----------------------

Abbreviation	Meaning		
.cnf	.confirm service primitive		
.ind	.indication service primitive		
.req	.request service primitive		
.res	.response service primitive		
AA	Application Association		
ААА	Authentication Authorization and Accounting		
АСК	Acknowledgement		
AARE	A-Associate Response – an APDU of the ACSE		
AARQ	A-Associate Request – an APDU of the ACSE		
ABP	Activation by Personalisation		
АСРМ	Association Control Protocol Machine		
ACSE	Association Control Service Element		
AE	Application Entity		
AES	Advanced Encryption Standard		
AL	Application Layer		
AP	Application Process		
APDU	Application Layer Protocol Data Unit		
API	Application Programming Interface		
ASE	Application Service Element		
ASO	Application Service Object		
ATM	Asynchronous Transfer Mode		
A-XDR	Adapted Extended Data Representation		
base_name	The short_name corresponding to the first attribute ("logical_name") of a COSEM object		
BD	Block Data		
BER	Basic Encoding Rules		
BFE	Broadcast Frame Exchange		
BN	Block Number		
BNA	Block Number Acknowledged		
BS	Bit string		
BTS	Block Transfer Streaming		
BTW	Block Transfer Window		
СА	Certification Authority		
CCA	Clear Channel Assessment		
C/D	Compression and Decompression		
CF	Control Function		
CL	Connectionless		
class_id	COSEM interface class identification code		
CMP	Certificate Management Protocol. Refer to RFC 4210.		
СО	Connection-oriented		
CoAP	Constrained Application Protocol (as defined by RFC 7252)		
CoAP BT	Constrained Application Protocol Block Transfer (as defined by RFC 7959)		

DLMS User Association

2025-05-28

DLMS UA 1000-2 Ed. 12

Abbreviation	Meaning		
CON	Confirmable		
COSEM	Comprehensive Semantic Model for Energy Management		
COSEM_on_IP	The TCP-UDP/IP based COSEM communication profile		
CRC	Cyclic Redundancy Check		
CRL	Certificate revocation list. Refer to Error! Reference source not found		
CSAP	Client Service Access Point		
CSMA-CA	Carrier Sense Multiple Access – Channel Access		
CSR	Certificate Signing Request		
DAG	Directed Acyclic Graph		
DCE	Data Communication Equipment (communications interface or modem)		
DCS	Data Collection System		
DevAddr	A 32-bit non-unique identifier assigned to an end-device statically or dynamically after a Join Procedure (depending on the activation mode) (LPWAN)		
DEVEUI	An IEEE EUI-64 used to identify the device during the Join Procedure		
DFE	Directed Frame Exchange		
DFE ULAD	Directed Frame Exchange Upper Layer Application Data		
DIO	DODAG Information Object		
DISC	Disconnect (a HDLC frame type)		
DLMS	Device Language Message Specification		
DM	Disconnected Mode (a HDLC frame type)		
DODAG	Destination Oriented Directed Acyclic Graph See [RFC 6550].		
DSA	Digital Signature Algorithm specified in FIPS PUB 186-4:2013		
DSAP	Data Link Service Access Point		
DSO	Energy Distribution System Operator		
DTE	Data Terminal Equipment (computers, terminals or printers)		
EAPOL	Extensible Authentication Protocol Over LAN		
EAP-TLS	Extensible Authentication Protocol – Transport Layer Security		
ECC	Elliptic Curve Cryptography		
ECDH	Elliptic Curve Diffie-Hellman key agreement protocol		
ECDSA	Elliptic Curve Digital Signature Algorithm specified in ANSI X9.62 and FIPS PUB 186-4:2013		
ECP	Elliptic Curve Point		
EDFE	Exended Directed Frame Exchange		
ETX	Expected Transmission Count. Number of expected packet transmissions required for error free reception at destination.		
EUI-64	64-bit Extended Unique Identifier		
FAN	Field Area Network		
FCS	Frame Check Sequence		
FD	Fan Data [Link]		
FDDI	Fibre Distributed Data Interface		
FE	Field Element (in relation with public key algorithms)		
FIPS	Federal Information Processing Standard		
F/R	Fragmentation and Reassembly		
FRMR	Frame Reject (a HDLC frame type)		

40/633

2025-05-28

DLMS UA 1000-2 Ed. 12

DLMS User Association

Abbreviation	Meaning		
FTP	File Transfer Protocol		
Gr	A GBT APDU received		
GAK	Global Authentication Key		
GBEK	Global Broadcast Encryption Key		
GBT	General Block Transfer		
GCM	Galois/Counter Mode (GCM), an algorithm for authenticated encryption with associated data		
<mark>GCP</mark>	Generic Companion Profile		
GMAC	A specialization of GCM for generating a message authentication code (MAC) on data that is not encrypted		
GMT	Greenwich Mean Time		
Gr.X	A field of a GBT APDU received		
Gs	A GBT APDU sent		
Gs.X	A field of a GBT APDU sent		
GSM	Global System for Mobile communications		
GUA	Global Unicast Address		
GUEK	Global Unicast Encryption Key		
GW	Gateway		
HCS	Header Check Sequence		
HDLC	High-level Data Link Control		
HES	Head End System, also known as Data Collection System NOTE The HES may be owned by the energy provider or the utility		
HHU	Hand Held Unit		
HLS	High Level Security (COSEM)		
HMAC	Keyed-Hash Message Authentication Code specified in FIPS 198-1		
HSM	Hardware Security Module		
HTTP	Hypertext Transfer Protocol		
l	Information (a HDLC frame type)		
IANA	Internet Assigned Numbers Authority		
IC	Interface Class		
ICMP	Internet Control Message Protocol		
IDevID	Initial Device Identifier. See [FANSPEC]		
IEEE	Institute of Electrical and Electronics Engineers		
IETF	Internet Engineering Task Force		
IP	Internet Protocol		
ISO	International Organization for Standardization		
IV	Initialization Vector		
KEK	Key Encrypting Key		
LAN	Local Area Network		
LB	Last Block		
LDN	Logical Device Name		
LLC	Logical Link Control (Sublayer)		
LLS	Low Level Security		
LNAP	Local Network Access Point		

DLMS User Association

2025-05-28

DLMS UA 1000-2 Ed. 12

41/633

LPDU LLC Protocol Data Unit L-SAP LLC sublayer Service Access Point LSB Least Significant Bit LSDU LLC Service Data Unit m mandatory, used in conjunction with attribute and method definitions MAC Medium Access Control (sublayer)			
LSB Least Significant Bit LSDU LLC Service Data Unit m mandatory, used in conjunction with attribute and method definitions			
LSDU LLC Service Data Unit m mandatory, used in conjunction with attribute and method definitions			
m mandatory, used in conjunction with attribute and method definitions			
MAC Medium Access Control (sublayer)			
MAC Message Authentication Code (cryptography)			
MHDS Multi Hop Delivery Service			
MIB Management Information Base			
MPL Multicast Protocol for Low-Power and Lossy Networks			
MSAP MAC sublayer Service Access Point (in the HDLC based profile, it is equal to the H	HDLC address)		
MSB Most Significant Bit			
MSC Message Sequence Chart			
MSDU MAC Service Data Unit			
MTU Maximum Transmission Unit			
N(R) Receive sequence Number			
N(S) Send sequence Number			
NDM Normal Disconnected Mode			
NGW Network Gateway			
NIST National Institute of Standards and Technology			
NNAP Neighbourhood Network Access Point			
NON Non-confirmable			
NRM Normal Response Mode			
optional, used in conjunction with attribute and method definitions			
OBIS Object Identification System			
OCSP Online Certificate Status Protocol			
OID Object Identifier			
OOB Out of Band			
OS Octet string			
OSI Open System Interconnection			
OTA Over The Air			
P/F Poll/Final			
PAN Personal area network			
PAN-IE PAN Information Element	PAN Information Element		
PAR Positive Acknowledgement with Retransmission	Positive Acknowledgement with Retransmission		
PDU Protocol data unit	Protocol data unit		
PhL Physical Layer			
PIB PAN Information Base			
PHSDU PH SDU			
PKCS Public Key Cryptography Standard, established by RSA Laboratories			
PKI Public Key Infrastructure			
PLC Power line carrier			
PPP Point-to-Point Protocol			
42/633 2025-05-28 DLMS UA 1000-2 Ed. 12 DLMS User	r Association		

DLMS/COSEM	Architecture	and	Protocols
------------	--------------	-----	-----------

Abbreviation	Meaning			
PSDU	Physical layer Service Data Unit			
PSTN	Public Switched Telephone Network			
RA	Registration Authority			
RG	Radio gateway			
RLRE	A-Release Respon	se – an APDU of the .	ACSE	
RLRQ	A-Release Reques	t – an APDU of the A	CSE	
RNG	Random Number G	enerator		
RNR	Receive Not Ready	(a HDLC frame type)		
RPL	IPv6 Routing Proto	col for Low-Power an	d Lossy Networks. See [RFC 6550].	
RQ	Receive Queue			
RR	Receive Ready (a l	HDLC frame type)		
RSA	Algorithm develope	d by Rivest, Shamir a	and Adelman; specified in ANS X9.31 and Ph	<cs #1.<="" td=""></cs>
S	A sequence of bloc	ks in the RQ or SQ		
SAP	Service Access Po	nt		
SCHC	Static Context Hea	der Compression and	fragmentation, a generic framework	
SDU	Service Data Unit			
SHA	Secure Hash Algor	ithm; specified in FIP	S PUB 180-4:2012	
SNMP	Simple Network Ma	inagement Protocol		
SNRM	Set Normal Respor	se Mode (a HDLC fra	ime type)	
SQ	Send Queue			
SSAP	Server Service Acc	ess Point		
STR	Streaming			
SUP	Supplicant. See [IEEE 802.1x]			
tbsCertificate	To be signed certif	cate		
ТСР	Transmission Cont	rol Protocol		
TDEA	Triple Data Encryp	tion Algorithm		
TL	Transport Layer			
TLS	Transport Layer Se	curity		
TPDU	Transport Layer Pr	otocol Data Unit		
TWA	Two Way Alternate			
UA	Unnumbered Ackno	wledge (a HDLC fran	ne type)	
UDP	User Datagram Pro	tocol		
UI	Unnumbered Information (a HDLC frame type)			
ULA	Unique Local (IPv6) Address			
UNC	Unbalanced operation Normal response mode Class			
URI	Uniform Resource Identifier			
USS	Unnumbered Send Status			
V(R)	Receive state Variable			
V(S)	Send state Variable			
VAA	Virtual Application Association			
WPDU	Wrapper Protocol Data Unit			
WI DO	Extended DLMS Application Service Element			
xDLMS ASE	Extended DLMS Ap	plication Service Ele	nent	
-	Extended DLMS Ap Wireless Fidelity	plication Service Ele	inent	

Abbreviation	Meaning
See also list of abbreviations specific to a cryptographic algorithm in the relevant clauses.	

3.6 Symbols related to the Galois/Counter Mode

Symbol	Meaning	
Α	Additional Authenticated Data, AAD	
AK	Authentication key, a parameter that is part of the AAD	
С	Ciphertext	
EK	Encryption key, i.e. the block cipher key	
IC	Invocation counter, part of the initialization vector. See also invocation field.	
IV	Initialization Vector	
len(X)	The bit length of the bit string X.	
LEN(X)	The octet length of the octet string X.	
Р	Plaintext	
SC	Security Control Byte	
SH	Security Header	
Sys-T	System title	
Т	Authentication tag	
t	The bit length of the authentication tag. NOTE This is the same as len(T)	
X II Y	Concatenation of two strings, X and Y.	

Symbols related the ECDSA algorithm 3.7

Symbol	Meaning	
d	The ECDSA private key, which is an integer in the interval $[1, n - 1]$.	
$\begin{array}{c} Q = \\ (x_Q, y_Q) \end{array}$	An ECDSA public key. The coordinates x_q and y_q are integers in the interval $[0, q - 1]$, and $Q = dG$.	
k	The ECDSA per-message secret number, which is an integer in the interval $[1, n - 1]$.	
r	One component of an ECDSA digital signature. It is an integer in $[1, n - 1]$. See the definition of (r, s) .	
S	One component of an ECDSA digital signature. It is an integer in $[1, n - 1]$. See the definition of (r, s) .	
(r, s)	An ECDSA digital signature, where r and s are the digital signature components.	
М	The message that is signed using the digital signature algorithm.	
Hash(M)	The result of a hash computation (message digest or hash value) on message M using an approved hash function.	

3.8 Symbols related to the key agreement algorithms

Symbol	Meaning		
$d_{e, U}$, $d_{e, V}$	Party U's and Party V's ephemeral private keys. These are integers in the range [1, n-1].		
$d_{s, U}, d_{s, V}$	Party U's and Party V's static private keys. These are integers in the range [1, n-1].		
ID_U	The identifier of Party U (the initiator)		
ID_V	The identifier of Party V (the responder)		
$Q_{e, U}$, $Q_{e, V}$	Party U's and Party V's ephemeral public keys. These are points on the elliptic curve defined by the domain parameters.		
$Q_{s, U}$, $Q_{s, V}$	Party U's and Party V's static public keys. These are points on the elliptic curve defined by the domain parameters.		
<i>U</i> , <i>V</i>	Represent the two parties in a (pair-wise) key establishment scheme.		
44/633	2025-05-28	DLMS UA 1000-2 Ed. 12	DLMS User Association

44/633 2025-05-28 DLMS UA 1000-2 Ed. 12 DLMS User Association

© Copyright 1997-2025 DLMS User Association

DLMS/COSEM Architecture and Protocols

	Symbol	Meaning
ſ	Ζ	A shared secret (represented as a byte string) that is used to derive secret keying material using a key derivation method. Source: NIST SP 800-56A Rev. 2: 2013

3.9 Abbreviations related to the DLMS/COSEM M-Bus communication profile

Abbrev	Term	Standard domain
ACC	Access number field	M-Bus
ALA	Application Layer Address	M-Bus
CFG	Configuration byte	M-Bus
CIELL	CI field introducing the extended link layer (wireless M-Bus)	M-Bus
CI Field	Control Information field	M-Bus
CITL	CI field introducing the transport layer	M-Bus
DTSAP	Destination Transport Service Access Point	Telecontrol
ELL	Extended Link Layer	M-Bus
ELLA	Extended Link Layer Address	M-Bus
FIN (bit)	Final Bit	Telecontrol
FT1.2	Data Integrity Format class FT1.2	Telecontrol
FT3	Data Integrity Format Class FT3	Telecontrol
LLA	Link Layer Address	M-Bus
STS	Status byte	M-Bus
STSAP	Source Transport Service Access Point	Telecontrol
wM-Bus	Wireless M-Bus	M-Bus

4 Information exchange in DLMS/COSEM

4.1 General

This Clause 4 introduces the main concepts of information exchange in DLMS/COSEM.

The objective of DLMS/COSEM is to specify a standard for a business domain oriented interface object model for devices and systems, as well as services to access the objects. Communication profiles to transport the messages through various communication media are also specified.

The term "devices" is an abstraction; consequently "device" may be any type of device for which this abstraction is suitable.

The COSEM object model is specified in DLMS UA 1000-1 – Part 2, the "Blue Book". The COSEM objects provide a view of the functionality of devices through their communication interfaces.

This Technical report, the "Green Book" specifies the DLMS/COSEM application layer, lower protocol layers and communication profiles.

The key characteristics of data exchange using DLMS/COSEM are the following:

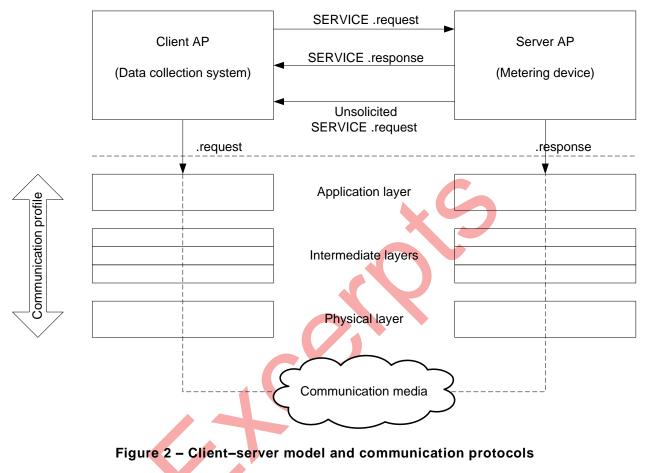
- devices can be accessed by various parties: clients and third parties;
- mechanisms to control access to the resources of the device are provided; these mechanisms are made available by the DLMS/COSEM AL and the COSEM objects ("Association SN / LN" object, "Security setup" object);
- security and privacy is ensured by applying cryptographical protection to xDLMS messages and to COSEM data;
- low overhead and efficiency is ensured by various mechanisms including selective access, compact encoding and compression;
- at a site, there may be single or multiple devices. In the case of multiple devices at a site, a single access point can be made available;
- data exchange may take place either remotely or locally. Depending on the capabilities of the device, local and remote data exchange may be performed simultaneously without interfering with each other;
- various communication media can be used on local networks (LN), neighbourhood networks (NN) and wide area networks (WAN).

The key element to ensure that the above requirements are met is the Application Association (AA) – determining the contexts of the data exchange – provided by the DLMS/COSEM AL. For details, see the relevant clauses below.

4.2 Communication model

DLMS/COSEM uses the concepts of the Open Systems Interconnection (OSI) model to model information exchange between devices and data collection systems.

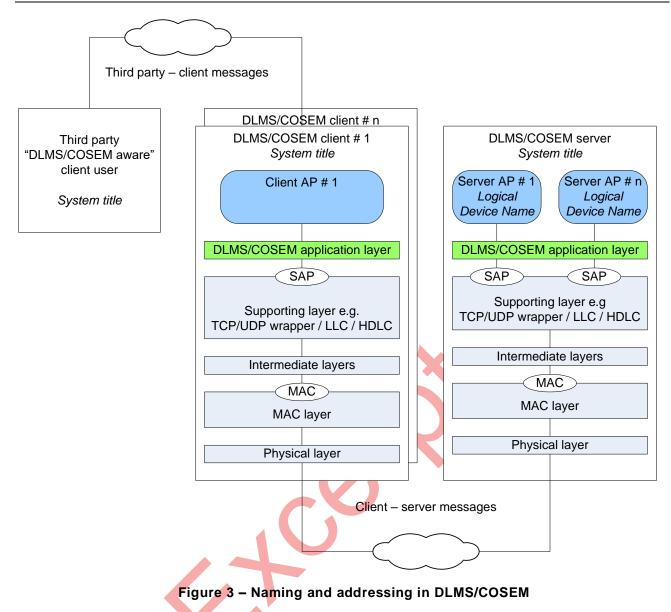
NOTE Information in this context comprises xDLMS messages and COSEM data.


Concepts, names and terminology used below relate to the OSI reference model described in ISO/IEC 7498-1:1994. Their use is outlined in this clause and further developed in other clauses.

Application functions of devices and data collection systems are modelled by application processes (APs).

Communication between APs is modelled by communication between application entities (AEs). An AE represents the communication functions of an AP. There may be multiple sets of OSI communication functions in an AP, so a single AP may be represented by multiple AEs. However, each AE represents a single AP. An AE contains a set of communication capabilities called application service elements (ASEs). An ASE is a coherent set of integrated functions. These ASEs may be used independently or in combination. See also 9.1.2.

Data exchange between data collection systems and devices is based on the client/server model where data collection systems play the role of the client and devices play the role of the server. The client sends service requests to the server which sends service responses. In addition the server may initiate unsolicited service requests to inform the client about events or to send data on pre-configured conditions. See also 4.6.


In general, the client and the server APs are located in separate devices. Therefore, message exchange takes place via a protocol stack as shown in Figure 2.

4.3 Naming and addressing

4.3.1 General

Naming and addressing are important aspects in communication systems. A name identifies a communicating entity. An address identifies where that entity can be found. Names are mapped to addresses; this is known as the process of binding. Figure 3 shows the main elements of naming and addressing in DLMS/COSEM.

4.3.2 Naming

DLMS/COSEM entities, including clients, servers as well as third party systems shall be uniquely named by their system title. System titles shall be permanently assigned.

Server physical devices may host one or more logical devices (LDs). LDs shall be uniquely identified by their Logical Device Name (LDN). LDs hosted by the same physical device share the system title. System titles are specified in 4.3.4. Logical device names are specified in 4.3.5.

4.3.3 Addressing

Each physical device shall have an appropriate address. It depends on the communication profile and may be a phone number, a MAC address, an IP network address, a CoAP URI, or a combination of these.

NOTE For example, in the case of the 3-layer, connection-oriented, HDLC based communication profile, the lower HDLC address is the MAC address.

Physical device addresses may be pre-configured or may be assigned during a registration process, which also involves binding between the addresses and the system titles.

Each DLMS client and each server – a COSEM logical device – is bound to a Service Access Point (SAP). The SAPs reside in the supporting layer of the DLMS/COSEM AL. Depending on the communication profile the SAP may be a TCP-UDP/IP wrapper address, a CoAP wrapper address, an

48/633	2025-05-28	DLMS UA 1000-2 Ed. 12	DLMS User Association
--------	------------	-----------------------	-----------------------

upper HDLC address, an LLC address etc. On the server side, this binding is modelled by the "SAP Assignment" IC; see DLMS UA 1000-1 Part 2 Ed.17:2025, 4.4.5.

The values of the SAPs on the client and the server side are specified in Table 1. The length of the SAPs depends on the communication profile.

Client SAPs			
No-station	0x00		
Client Management Process / CIASE ¹	0x01		
Public Client	0x10		
Open for elient AD enginement	0x020x0F		
Open for client AP assignment	0x11 and up		
Server SAPs			
No-station / CIASE ¹	0x00		
Management Logical Device	0x01		
Reserved for future use 0x020x0F			
Open for server SAP assignment 0x10 and up			
All-station (Broadcast) Communication profile specific			
¹ In the case of the DLMS/COSEM S-FSK PLC profile, see 10.5.			
NOTE Depending on the supporting protocol layer, the SAPs may be represented on one or more bytes.			

Table 1 – Client and server SAPs

4.3.4 System title

The system title *Sys-T* shall uniquely identify each DLMS/COSEM entity. This may be a server, a client or a third party that can access servers via clients. The system title:

- shall be 8 octets long;
- shall be unique.

The first three (most significant) octets should hold the three-letter manufacturer ID¹. This is the same as the first three octets of the Logical Device Name, see 4.3.5. The remaining 5 octets shall ensure uniqueness.

NOTE The system title can be derived for example from the last 12 digits of the manufacturing number, up to 999 999 999 999. This value converts to 0xE8D4A50FFF. Values above this, up to 0xFFFFFFFFF (decimal 1 099 511 627 775) can also be used, but these values cannot be mapped to the last 12 digits of the manufacturing number.

Project specific companion specifications may specify a different structure. In that case, the details should be specified by the naming authority designated for the project.

The use of the system title in cryptographic protection of xDLMS messages and COSEM data is further specified in 9.2.3 and 9.2.7.

The client and server require knowledge of each others' system titles before the cryptographic security algorithms can be used in a ciphered application context. The following options are available for the exchange of system titles:

during the communication media specific registration process.
 For example, when the S-FSK PLC profile is used, system titles are exchanged during the registration process using the CIASE protocol; see 10.5.5;

¹ Administered by the FLAG Association in co-operation with the DLMS UA.

DLMS User Association 2025	5-05-28 DLMS UA 1000-2 Ed. 12	49/633
----------------------------	-------------------------------	--------

- in all communication profiles, during AA establishment using the COSEM-OPEN service carried the AARQ / AARE APDU (see 9.3.2). If the system titles sent / received during AA establishment are not the same as the ones exchanged during the registration process, the AA shall be rejected;
- by writing the *client_system_title* attribute and by reading the *server_system_title* attribute of "Security setup" objects, see DLMS UA 1000-1 Part 2 Ed.17:2025, 4.4.7.

In the case of broadcast communication the client can send its system title to all servers, but it has to retrieve the system title of each server one by one.

4.3.5 Logical Device Name

Logical Device Name (LDN) shall be as specified in DLMS UA 1000-1 Part 2 Ed.17:2025, 4.1.8.2.

4.3.6 Client user identification

The client user identification mechanism allows a server to distinguish between different users on the client side and to log their activities accessing the device. It is specified in DLMS UA 1000-1 Part 2 Ed.17:2025, 4.4.2. Naming of client users is outside the scope of this Technical Report.

4.4 Connection oriented operation

The DLMS/COSEM AL is connection oriented. See also 9.1.3.

A communication session consists of three phases, as it is shown in Figure 4:

- first, an application level connection, called Application Association (AA), is established between a client and a server AE; see also 9.1.3. Before initiating the establishment of an AA, the peer PhLs of the client and server side protocol stacks have to be connected. The intermediate layers may have to be connected or not. Each layer, which needs to be connected, may support one or more connections simultaneously;
- once the AA is established, message exchange can take place;
- at the end of the data exchange, the AA is released.

Figure 4 – A complete communication session in the CO environment

For the purposes of very simple devices, one-way communicating devices, and for multicasting and broadcasting pre-established AAs are also allowed. For such AAs the full communication session may include only the message exchange phase: it can be considered that the connection establishment phase has been already done somewhere in the past. Pre-established AAs cannot be released. See also 9.4.4.4.

50/633 2025-05-28	DLMS UA 1000-2 Ed. 12	DLMS User Association
-------------------	-----------------------	-----------------------